Tensile and shear capacity of metals

AI Thread Summary
Metals typically exhibit lower shear strength compared to tensile strength due to their crystalline structure and the way they deform under different loads. Theoretical models suggest that the atomic bonds in metals are more effectively aligned to resist tension than shear, leading to a lower shear capacity. However, practical observations often show that the actual shear strength is closer to 70% of the tensile strength, rather than the commonly used rule of thumb of 50%. This discrepancy can be attributed to the energy required for deformation, as shear loading may activate additional slip systems in the crystal structure, enhancing strength. Understanding these differences is crucial for engineering applications involving metal materials.
LT Judd
Messages
25
Reaction score
8
TL;DR Summary
What is the underlying reason for the difference in tensile stress capacity and shear stress capacity in metals?
Steel and other metals data sheets and mill specs most commonly quote some tensile strength metric, like Proof, Yield or Ultimate Tensile Stress. Less common is the value for shear strength. Often as rule of thumb the allowable shear stress is taken as half the allowable tensile stress but, when you do find actual data, its often more like 70%. Example Source: https://www.engineersedge.com/materials/material_tensile_shear_and_yield_strength_15798.htm.
My question is what the underlying theoretical reason is why metals are weaker in shear than in tension, and what is the practical reason why the actual difference is less than the theoretical.
 
Engineering news on Phys.org
The reason could be the reduced energy or work that is required for the type of deformation that the metal cubic crystal structure suffers under shear load.

Copied from:
https://engineeringlibrary.org/reference/properties-of-metals-doe-handbook

"When metal experiences strain, its volume remains constant. Therefore, if volume remains constant as the dimension changes on one axis, then the dimensions of at least one other axis must change also. If one dimension increases, another must decrease."
 
LT Judd said:
Summary: What is the underlying reason for the difference in tensile stress capacity and shear stress capacity in metals?

and what is the practical reason why the actual difference is less than the theoretical.
I don't see in your post anything that backs up that statement.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top