Tensor product of operators and ladder operators

Click For Summary
SUMMARY

The discussion focuses on the tensor product of SU(2) representations and the application of ladder operators to manipulate angular momentum states. The tensor product of two SU(2) matrices results in a 4x4 matrix representation with basis states |d>d>, |d>u>, |u>d>, and |u>u>. The action of the ladder operator on these states is clearly defined, demonstrating how it transitions between states with different magnetic quantum numbers (m). The conversation concludes with a detailed explanation of the Clebsch-Gordan coefficients and the iterative process to derive them, confirming the dimensionality of the resulting irreducible representations.

PREREQUISITES
  • Understanding of SU(2) representations and their matrix forms
  • Familiarity with angular momentum in quantum mechanics
  • Knowledge of ladder operators and their action on quantum states
  • Basic grasp of Clebsch-Gordan coefficients and their significance in quantum mechanics
NEXT STEPS
  • Study the derivation of Clebsch-Gordan coefficients in detail
  • Learn about the application of ladder operators in quantum mechanics
  • Explore the implications of tensor products in higher-dimensional representations
  • Investigate the role of angular momentum coupling in quantum systems
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers focusing on angular momentum theory and representation theory in quantum systems.

Heidi
Messages
420
Reaction score
40
Hi Pfs
i have 2 matrix representations of SU(2) . each of them uses a up> and down basis (d> and u>
If i take their tensor product i will get 4*4 matrices with this basis:
d>d>,d>u>,u>d>,u>u>
these representation is the sum equal to the sum of the 0-representation , a singlet represertation with
m= 0 and a 1-representation of 3*3 matris with m= -1,0,1
i have two states with m= 0 corresponding to u>d> and d>u> in their vector space.
if i start with m = 1 a ladder operator will decrease m to 0 that will be in the triplet .
How to write this action of the ladder operator in the 4 vector basis?
 
Physics news on Phys.org
As the total angular mometum of 2 particles is their sum, it seems natural to take a symmetric result to the action on u>u> of the down ladder
and to get u>d> + d>u> (up to a normalization factor.
repeating its action on this vector would give d>d>
for the singulet u>d> - d>u> it would give the nul vector.
Is this correct?
So changin the basis uu>, ud> , du>, dd> into uu>, (ud>+du>),dd,(ud>-du>), would diagonalize by bloc the tensor product of two 2*2 SU(2) representations.
 
Consider the addition of two spins ##\vec{S}=\vec{s}_1+\vec{s}_2## and consider that ##\vec{s}_1## and ##\vec{s}_2## are realized in the irreps. with spins ##s_1## and ##s_2##, respectively, and we look for the reduction of ##\vec{S}## into irreducible parts of the induced "product representation".

This is achieved by noting that we have the product basis ##|s_1,s_2;\sigma_1,\sigma_2 \rangle##, which is the common basis of the compatible operators ##\vec{s}_1^2##, ##\vec{s}_2^2##, ##s_{1z}##, and ##s_{2z}## with (setting ##\hbar=1## for simplicity)
$$\vec{s}_1^2 |s_1,s_2;\sigma_1,\sigma_2 \rangle = s_1 (s_1+1) |s_1,s_2;\sigma_1,\sigma_2 \rangle,$$
$$\vec{s}_2^2 |s_1,s_2;\sigma_1,\sigma_2 \rangle = s_2 (s_2+1) |s_1,s_2;\sigma_1,\sigma_2 \rangle,$$
$$s_{13} |s_1,s_2;\sigma_1,\sigma_2 \rangle =\sigma_{13} |s_1,s_2;\sigma_1,\sigma_2 \rangle,$$
$$s_{23} |s_1,s_2;\sigma_1,\sigma_2 \rangle =\sigma_{23} |s_1,s_2;\sigma_1,\sigma_2 \rangle,$$
where ##s_1, s_2 \in \{0,1/2,1,3/2,\ldots \}## and ##\sigma_{13} \in \{-s_1,-s_1+1,\ldots s_1-1,s_1 \}##, ##\sigma_{23} \in \{-s_2,-s_2+1,\ldots,s_2-1,s_2 \}##.
Formally these basis vectors are given by the "product basis"
$$|s_1, s_2;\sigma_1,\sigma_2 \rangle = |s_1,\sigma_1 \rangle \otimes |s_2,\sigma_2 \rangle.$$
On the other hand we have ##\vec{S}^2##, ##S_3##, ##\vec{S}_1^2##, ##\vec{S}_2^2## as another compatible set of spin observables, i.e., we can build a common basis ##|S,s_1,s_2,\Sigma \rangle## with
$$\vec{S}^2 |S,s_1,s_2,\Sigma \rangle=S(S+1) |S,s_1,s_2,\Sigma \rangle,$$
$$\vec{s}_1^2 |S,s_1,s_2,\Sigma \rangle=s_1 (s_1+1) |S,s_1,s_2,\Sigma \rangle,$$
$$\vec{s}_2^2 |S,s_1,s_2,\Sigma \rangle=s_2 (s_2+1) |S,s_1,s_2,\Sigma \rangle,$$
$$S_3 |S,s_1,s_2,\Sigma \rangle = S |S,s_1,s_2,\Sigma \rangle.$$
Now the product basis is also an eigenbasis of ##S_3## and
$$S_3 |s_1,s_2;\sigma_1,\sigma_2 \rangle=(\sigma_1 + \sigma_2) |s_1,s_2;\sigma_1,\sigma_2 \rangle.$$
That means that the possible ##\Sigma \in \{(s_1+s_2),(s_1+s_2)-1,\ldots,-(s_1+s_2)+1,-(s_1+s_2) \}## and
$$\langle S,s_1,s_2,\Sigma|s_1,s_2;\sigma_1,\sigma_2 \rangle \propto \delta_{\Sigma,\sigma_1+\sigma_2}.$$
This implies that we must have ##S \geq s_1+s_2##, because otherwise there couldn't be the largest eigenvalue ##s_1+s_2## for ##S_3=s_{13}+s_{23}##. We can not have ##S>s_1+s_2##, because then via the ladder operator ##S_+## there'd be an eigenvector of ##S_3## with eigenvalue ##s_1+s_2+1##, but this doesn't exist within our product representation and so cannot exist in the other basis either.

Thus there's exactly one eigenvector ##|S=s_1+s_2,s_1,s_2,\Sigma=s_1+s_2 \rangle##, and we can choose it to be the product-basis vector ##|s_1,s_2;\sigma_1=s_1,\sigma_2=s_2 \rangle##. Thus we must have as one part of the new basis the complete basis to the irreducible representation with ##S=s_1+s_2##, which we can get from a repeated application of ##S_-=S_x-\mathrm{i} S_y## on this eigenvector with maximum ##\Sigma=s_1+s_2##, which finally stops with the eigenvector with ##\Sigma=-(s_1+s_2)##.

Now you consider the orthogonal complement of the subspace spanned by these ##2(s_1+s_2)+1## eigenvectors for ##S=s_1+s_2##. The largest eigenvalue for ##S_3## in this orthogonal complement can only be ##s_1+s_2-1##, and there's only one eigenvector to this eigenvalue (since there are two in the product basis, i.e., the ones where ##\sigma_1=s_1-1, \quad \sigma_2=s_2## and ##\sigma_1=s_1, \quad \sigma_2=s_2-1##, i.e., the eigenspace ##\text{Eig}(\Sigma,s_1+s_2-1)## is two-dimensional, and one basis vector we have constructed with ##S=s_1+s_2##. Now with the same argument as above for ##S## when restricting ##\vec{S}^2## to the orthonal complement to the ##S=s_1+s_2## irrep. we must have ##S=s_1+s_2-1##, and there's a unique (up to a factor) vector orthogonal to ##|S=s_1+s_2, s_1,s_2,\Sigma=s_1+s_2-1##, which we have to choose as the eigenvector of ##S=s_1+s_2-1,s_1,s_2,\Sigma=s_1+s_2-1##, and again we get all other eigenvectors for the irrep. with ##S=s_1+s_2-1## by acting repeatedly with ##S_-## to this vector.

Then we iterate the argument to the orthogonal complement of both the ##S=s_1+s_2## and ##S=s_1+s_2-1## subspaces etc. It becomes clear that the iteration stops with the lowest possible value ##S=|s_1-s_2|##. This you get by simple counting of the resulting dimensions. We know that the entire space is ##(2s_1+1)(2s_2+1)##-dimensional (spanned by the product basis) and the dimensions of the ##S## bases of the irred. subspaces just constructed iteratively add indeed up to (make ##s_1 \geq s_2## for simplicity)
$$[2(s_1+s_2)+1]+[2(s_1+s_2-1)+1]+[2 (s_1+s_2-2)+1]+\cdots + [2(s_1-s_2)+1]=(2s_2+1)2(s_1+s_2) - 2(1+2+\cdots 2s_2)+(2s_2+1)= 2 (2s_2+1)(s_1+s_2) -2 \frac{1}{2} (2s_1+1)(2s_2)+2s_2+1=(2s_1+1)(2s_2+1).$$
By explicitly doing this iterative scheme you can derive the Clebsch-Gordan coefficients
$$C(S,s_1,s_2,\Sigma|s_1,s_2;\sigma_1 \sigma_2)=\langle S,s_1,s_2,\Sigma|s_1,s_2;\sigma_1,\sigma_2 \rangle.$$
For your example we have
$$|S=1,s_1=1/2,s_2=1/2,\Sigma=1 \rangle=|s_1=1/2,s_1=1/2,\sigma_1=1/2,\sigma_1=1/2 \rangle,$$
$$|S=1,s_1=1/2,s_2=1/2,\Sigma=0 \rangle = \frac{1}{\sqrt{2}} (|s_1=1/2,s_2=1/2,\sigma_1=-1/2,\sigma_2=1/2 \rangle + |s_1=1/2,s_2=1/2,\sigma_1=1/2,\sigma_2=-1/2 \rangle),$$
$$S=1,s_1=1/2,s_2=1/2,\Sigma=-1 \rangle = |s_1=1/2,s_2=1/2,\sigma_1=-1/2,\sigma_2=-1/2 \rangle.$$
The remaining eigenvector with ##\Sigma=0## must be orthogonal to the above given with ##S=1## and ##\Sigma=0##, which uniquely (up to a phase factor) is
$$|S=0,s_1=1/2,s_2=1/2,\Sigma=0 \rangle=\frac{1}{\sqrt{2}} (|s_1=1/2,s_2=1/2,\sigma_1=-1/2,\sigma_2=1/2 \rangle -|s_1=1/2,s_2=1/2,\sigma_1=1/2,\sigma_2=-1/2 \rangle).$$
 
  • Love
  • Like
Likes   Reactions: Heidi and topsquark

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K