Graduate Tensor/Vector decomposition/representation & DOF arguement

Click For Summary
In fluid mechanics, the velocity vector ##U## can be expressed as the gradient of a scalar potential ##\Phi##, where ##U## has three degrees of freedom (dof) and ##\Phi## has one. This representation is valid only under the condition that the flow is irrotational, meaning ##\nabla \times \vec{U} = 0##. The discussion explores the degrees of freedom in tensor decomposition, noting that the total dof of the components must equal or exceed that of the original tensor. The example of the Riemann tensor decomposition illustrates how the components can have varying dof while still adhering to this principle. Overall, the relationship between dof in fluid mechanics and tensor decomposition emphasizes the constraints imposed by the physical properties of the flow.
binbagsss
Messages
1,291
Reaction score
12
In fluid mechanics, it is sometimes useful to present the velocity, ##U## in terms of a scalar potential ##\Phi## as:##\vec{U}=\nabla \phi##
##U## has 3 dof. ##\phi## has 1.If asked why this works, in terms of a dof argument, why is this?e.g . compared to GR common decomposition of the Riemann tensor into##R^{\nu\lambda\kappa\rho} =R*^{\nu\lambda\kappa\rho} + BR\eta*^{\nu\lambda\kappa\rho} + C^{\nu\lambda\kappa\rho},## (1)

With ##C^{\nu\lambda\kappa\rho}## is traceless, ##R=\eta_{\nu\kappa} \eta_{\lambda\rho}R^{\nu\lambda\kappa\rho}##, where #\eta^{ab}# denotes the Minkowski metric and ##B,C## are constants, and where ##R*^{\nu\lambda\kappa\rho}## denotes ##R*^{\nu\lambda\kappa\rho}=\frac{1}{4}\left[{R}^{\nu\kappa}\eta^{\lambda\rho}-R^{\nu\rho}\eta^{\lambda\kappa}+{R}^{\lambda\rho}\eta^{\nu\kappa}-{R}^{\lambda\kappa}\eta^{\nu\rho}\right] ## and## \eta*^{\nu\lambda\kappa\rho}= 2\eta^{\nu\kappa}\eta^{\lambda\rho}-2\eta^{\nu\rho}\eta^{\lambda\kappa} ##

From what I understand the tensors making up the decomposition can be a number of degrees of freedom at most the same as the object they are making up, and altogether they must have at least the total number of dof of the object they are making up. So , e.g. if T=A+B+C, and T has 10 d.o.f, then each of A,B,C can have any number between [1,10] of d.o.f, and altogether they must have at least 10 d.o.f? Is this correct?

So looking at the above, equation (1), the first term has 10 dof, the second 1, and the last 10 dof. Or would you look at the first term as a sum of four terms each of 10 dof, so it could potentially represent a tensor with 40 dof?

Thanks.
 
Physics news on Phys.org
binbagsss said:
In fluid mechanics, it is sometimes useful to present the velocity, ##U## in terms of a scalar potential ##\Phi## as:##\vec{U}=\nabla \phi##
##U## has 3 dof. ##\phi## has 1.

This is only possible if the flow is irrotational, ie. \nabla \times \vec U = 0.
 
pasmith said:
This is only possible if the flow is irrotational, ie. \nabla \times \vec U = 0.
apologies yes I should have added that.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
7K
  • · Replies 1 ·
Replies
1
Views
462
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K