Differential geometry Definition and 176 Discussions

Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.
Since the late 19th century, differential geometry has grown into a field concerned more generally with the geometric structures on differentiable manifolds. Differential geometry is closely related to differential topology and the geometric aspects of the theory of differential equations. The differential geometry of surfaces captures many of the key ideas and techniques endemic to this field.

View More On Wikipedia.org
  1. G

    A Principal Invariants of the Weyl Tensor

    It's possible that this may be a better fit for the Differential Geometry forum (in which case, please do let me know). However, I'm curious to know whether anyone is aware of any standard naming convention for the two principal invariants of the Weyl tensor. For the Riemann tensor, the names of...
  2. D

    I Are the coordinate axes a 1d- or 2d-differentiable manifold?

    Suppose $$ D=\{ (x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\} \cup \{ (0,y) \in \mathbb{R}^2 : y \in \mathbb{R} \}$$ is a subset of $$\mathbb{R}^2 $$ with subspace topology. Can this be a 1d or 2d manifold? Thank you!
  3. D

    I Is the projective space a smooth manifold?

    Suppose you have the map $$\pi : \mathbb{R}^{n+1}-\{0\} \longrightarrow \mathbb{P}^n$$. I need to prove that the map is differentiable. But this map is a chart of $$\mathbb{P}^n$$ so by definition is differentiable? MENTOR NOTE: fixed Latex mistakes double $ signs and backslashes needed for math
  4. malawi_glenn

    Other Collection of Free Online Math Books and Lecture Notes (part 1)

    School starts soon, and I know students are looking to get their textbooks at bargain prices 🤑 Inspired by this thread I thought that I could share some of my findings of 100% legally free textbooks and lecture notes in mathematics and mathematical physics (mostly focused on geometry) (some of...
  5. Introduction/Logic of propositions and predicates- 01 - Frederic Schuller

    Introduction/Logic of propositions and predicates- 01 - Frederic Schuller

    This is from a series of lectures - "Lectures on the Geometric Anatomy of Theoretical Physics" delivered by Dr.Frederic P Schuller
  6. S

    Normal vector of an embedding surface

    I will only care about the ##t## and ##x## coordinates so that ##(t, z, x, x_i) \rightarrow (t,x)##. The normal vector is given by, ##n^\mu = g^{\mu\nu} \partial_\nu S ## How do I calculate ##n^\mu## in terms of ##U## given that the surface is written in terms of ##t## and ##x##? Also, after...
  7. diffgeo4life

    I Generic curve in R^n

    What do we know of a curve(/what can it look like) in R^n if we know that κ1,κ2,...,κn-1 is constant?
  8. V

    I Diverging Gaussian curvature and (non) simply connected regions

    Hi there! I have a few related questions on Gaussian curvature (K) of surfaces and simply connected regions: Suppose that K approaches infinity in the neighborhood of a point (x1,x2) . Is there any relationship between the diverging points of K and (non) simply connected regions? If K diverges...
  9. cianfa72

    I Darboux theorem for symplectic manifold

    Hi, I am missing the point about the application of Darboux theorem to symplectic manifold case as explained here Darboux Theorem. We start from a symplectic manifold of even dimension ##n=2m## with a symplectic differential 2-form ##w## defined on it. Since by definition the symplectic 2-form...
  10. P

    A Representing flux tubes as a pair of level surfaces in R^3

    I am trying to see if Vector fields(I am thinking of electric and magnetic fields) without sources(divergence less) can be represented by a pair of functions f and g such that the level surfaces of the functions represent flux lines. I am trying to solve this problem in ## R^3 ## with a...
  11. Falgun

    Geometry Confusion about Differential Geometry Books

    I was just browsing through the textbooks forum a few days ago when I came across a post on differential geometry books. Among the others these two books by the same author seem to be the most widely recommended: Elementary Differential Geometry (Barret O' Neill) Semi-Riemannian Geometry with...
  12. T

    A Question about definition of a hypersurface

    In my notes on general relativity, hypersurfaces are defined as in the image. What confuses me is that if f=constant, surely the partial differential is going to be zero? I'm not sure if I'm missing something, but surely the function can't be equal to a constant and its partial differential be...
  13. B

    Find the osculating plane and the curvature

    I know the osculating plane is normal to the binormal vector ##B(t)=(a,b,c)##. And since the point on which I am supposed to find the osculating plane is not given, I'm trying to find the osculating plane at an arbitrary point ##P(x_0,y_0,z_0)##. So, if ##R(x,y,z)## is a point on the plane, the...
  14. O

    A On the relationship between Chern number and zeros of a section

    Greetings. I still struggle a little with the mathematics involved in the description of gauge theories in terms of fiber bundles, so please pardon and correct me if you find conceptual errors anywhere in this question. I would like to understand the connection (when it exists) between the...
  15. steve1763

    A Line element geometry

    i'm trying to find what sort of 2-d geometry this system is in, I've been given the line element 𝑑𝑠2=−sin𝜃cos𝜃sin𝜙cos𝜙[𝑑𝜃2+𝑑𝜙2]+(sin2𝜃sin2𝜙+cos2𝜃cos2𝜙)𝑑𝜃𝑑𝜙 where 0≤𝜙<2𝜋 and 0≤𝜃<𝜋/2 Im just not sure where to start. I've tried converting the coordinates to cartesian to see if it yields a...
  16. V

    I Riemannian Fisher-Rao metric and orthogonal parameter space

    Let ## \mathcal{S} ## be a family of probability distributions ## \mathcal{P} ## of random variable ## \beta ## which is smoothly parametrized by a finite number of real parameters, i.e., ## \mathcal{S}=\left\{\mathcal{P}_{\theta}=w(\beta;\theta);\theta \in \mathbb{R}^{n}...
  17. K

    A Can we always rewrite a Tensor as a differential form?

    I read in the book Gravitation by Wheeler that "Any tensor can be completely symmetrized or antisymmetrized with an appropriate linear combination of itself and it's transpose (see page 83; also this is an exercise on page 86 Exercise 3.12). And in Topology, Geometry and Physics by Michio...
  18. K

    Geometry Modern Differential Geometry Textbook Recommendation

    Could you provide recommendations for a good modern introductory textbook on differential geometry, geared towards physicists. I know physicists and mathematicians do mathematics differently and I would like to see how it is done by a physicists standard. I have heard Chris Ishams “Modern Diff...
  19. K

    A Differential Forms or Tensors for Theoretical Physics Today

    There are a few different textbooks out there on differential geometry geared towards physics applications and also theoretical physics books which use a geometric approach. Yet they use different approaches sometimes. For example kip thrones book “modern classical physics” uses a tensor...
  20. Ishika_96_sparkles

    I Directional Derivatives of a vector ----gradient of f(P)----

    Definition: Let f be a differentiable real-valued function on ##\mathbf{R}^3##, and let ##\mathbf{v}_P## be a tangent vector to it. Then the following number is the derivative of a function w.r.t. the tangent vector $$\mathbf{v}_p[\mathit{f}]=\frac{d}{dt} \big( \mathit{f}(\mathbf{P}+ t...
  21. W

    I Maximally Symmetric 3-Spaces

    Why does the constraint: $$R_{ijkl}=K(g_{ik} g_{jl} - g_{il}g_{jk})$$ Imply that the resulting space is maximally symmetric? The GR book I'm using takes this relation more or less as a definition, what is the idea behind here?
  22. Adrian555

    A Geodesics of the 2-sphere in terms of the arc length

    I'm trying to evaluate the arc length between two points on a 2-sphere. The geodesic equation of a 2-sphere is: $$\cot(\theta)=\sqrt{\frac{1-K^2}{K^2}}\cdot \sin(\phi-\phi_{0})$$ According to this article: http://vixra.org/pdf/1404.0016v1.pdf the arc length parameterization of the...
  23. M

    Covariant derivative of a (co)vector field

    My attempt so far: $$\begin{align*} (\nabla_X Y)^i &= (\nabla_{X^l \partial_l}(Y^k\partial_k))^i=(X^l \nabla_{\partial_l}(Y^k\partial_k))^i\\ &\overset{2)}{=} (X^l (Y^k\nabla_{\partial_l}(\partial_k) + (\partial_l Y^k)\partial_k))^i = (X^lY^k\Gamma^n_{lk}\partial_n + X^lY^k{}_{,l}\partial_k)^i\\...
  24. M

    The sphere in general relativity

    I'm a bit confused about the notation used in the exercise statement, but if I'm not misunderstanding we have $$\begin{align*}(\psi^+_1)^{-1}:\begin{array}{rcl} \{\lambda^1,\lambda^2\in [a,b]\mid (\lambda^1)^2+(\lambda^2)^2<1\}&\longrightarrow& \{\pm x_1>0\}\subset \mathbb{S}^2\\...
  25. M

    I Geodesics subject to a restriction

    Hi, I'm trying to solve a differential geometry problem, and maybe someone can give me a hand, at least with the set up of it. There is a particle in a 3-dimensional manifold, and the problem is to find the trajectory with the smallest distance for a time interval ##\Delta t=t_{1}-t_{0}##...
  26. Celso

    I Curve inside a sphere

    Honestly I don't know where to begin. I started differentiating alpha trying to show that its absolute value is constant, but the equation got complicated and didn't seem right.
  27. abby11

    A Derivation of radial momentum equation in Kerr geometry

    I am trying to derive the radial momentum equation in the equatorial Kerr geometry obtained from the equation $$ (P+\rho)u^\nu u^r_{;\nu}+(g^{r\nu}+u^ru^\nu)P_{,r}=0 \qquad $$. Expressing the first term in the equation as $$ (P+\rho)u^\nu u^r_{;\nu}=(P+\rho)u^r u^r_{;r} $$ I obtained the...
  28. L

    I Understanding the definition of derivative

    As far as I understand, when we want to differentiate a vector field along the direction of another vector field, we need to define either further structure affine connection, or Lie derivative through flow. However, I don't understand why they are needed. If we want to differentiate ##Y## in...
  29. L

    A BMS coordinates near future null infinity

    Let us consider Ashtekar's definition of asymptotic flatness at null infinity: I want to see how to construct the so-called Bondi coordinates ##(u,r,x^A)## in a neighborhood of ##\mathcal{I}^+## out of this definition. In fact, a distinct approach to asymptotic flatness already starts with...
  30. L

    I Understanding vector differential

    For a function ##f: \mathbb{R}^n \to \mathbb{R}##, the following proposition holds: $$ df = \sum^n \frac{\partial f}{\partial x_i} dx_i $$ If I understand right, in the theory of manifold ##(df)_p## is interpreted as a cotangent vector, and ##(dx_i)_p## is the basis in the cotangent space at...
  31. W

    Riemann Curvature Tensor in 2D

    Since in 2D the riemman curvature tensor has only one independent component, ## R = R_{ab} g^{ab} ## can be reversed to get the riemmann curvature tensor. Write ## R_{ab} = R g_{ab} ## Now ## R g_{ab} = R_{acbd} g^{cd}## Rewrite this as ## R_{acbd} = Rg_{ab} g_{cd} ## My issue is I'm not...
  32. wafelosek

    A Killing vectors corresponding to the Lorentz transformations

    Hi everyone! I have a problem with one thing. Let's consider the Lorentz group and the vicinity of the unit matrix. For each ##\hat{L}## from such vicinity one can prove that there exists only one matrix ##\hat{\epsilon}## such that ##\hat{L}=exp[\hat{\epsilon}]##. If we take ##\epsilon^{μν}##...
  33. Abhishek11235

    Differential 1 form on line

    Homework Statement This problem is from V.I Arnold's book Mathematics of Classical Mechanics. Q) Show that every differential 1-form on line is differential of some function Homework Equations The differential of any function is $$df_{x}(\psi): TM_{x} \rightarrow R$$ The Attempt at a Solution...
  34. Zhang Bei

    I Is the commutator of vector fields an important notion?

    Hi, I'm just starting to read Wald and I find the notion of the commutator hard to grasp. Is it a computation device or does it have an intuitive geometric meaning? Can anyone give me an example of two non-commutative vector fields? Thanks!
  35. ZuperPosition

    Abstract definition of electromagnetic fields on manifolds

    Hello, In the sources I have looked into (textbooks and articles on differential geometry), I have not found any abstract definition of the electromagnetic fields. It seems that at most the electric field is defined as $$\bf{E}(t,\bf{x}) = \frac{1}{4\pi \epsilon_0} \int \rho(t,\bf{x}')...
  36. Gene Naden

    I How to prove that compact regions in surfaces are closed?

    This is problem 4.7.11 of O'Neill's *Elementary Differential Geometry*, second edition. The hint says to use the Hausdorff axiom ("Distinct points have distinct neighborhoods") and the results of fact that a finite intersection of neighborhoods of p is again a neighborhood of p. Here is my...
  37. cianfa72

    I Differential structure on a half-cone

    Hi, consider an "half-cone" represented in Euclidean space ##R^3## in cartesian coordinates ##(x,y,z)## by: $$(x,y,\sqrt {x^2+y^2})$$ It does exist an homeomorphism with ##R^2## through, for instance, the projection ##p## of the half-cone on the ##R^2## plane. You can use ##p^{-1}## to get a...
  38. aboutammam

    I About the properties of the Divergence of a vector field

    Hello I have a question if it possible, Let X a tangantial vector field of a riemannian manifolds M, and f a smooth function define on M. Is it true that X(exp-f)=-exp(-f).X(f) And div( exp(-f).X)=exp(-f)〈gradf, X〉+exp(-f)div(X)? Thank you
  39. W

    A Defining a Contact Structure Globally -- Obstructions?

    Hi, Let ##M^3## be a 3-manifold embedded in ##\mathbb R^3## and consider a 2-plane field ( i.e. a Contact Structure) assigned at each tangent space ##T_p##. I am trying to understand obstructions to defining the plane field as a 1-form ( Whose kernel is the plane field/ Contact Structure) Given...
  40. L

    A Construction of Bondi Coordinates on general spacetimes

    I'm trying to understand the BMS formalism in General Relativity and I'm in doubt with the so-called Bondi Coordinates. In the paper Lectures on the Infrared Structure of Gravity and Gauge Theories Andrew Strominger points out in section 5.1 the following: In the previous sections, flat...
  41. Gene Naden

    I Showing that the image of an arbitrary patch is an open set

    O'Neill's Elementary Differential Geometry, problem 4.3.13 (Kindle edition), asks the student to show that the image of an open set, under a proper patch, is an open set. Here is my attempt at a solution. I do not know if it is complete as I have difficulty explaining the consequence of the...
  42. Gene Naden

    I Differential for surface of revolution

    O'Neill's Elementary Differential Geometry contains an argument for the following proposition: "Let C be a curve in a plane P and let A be a line that does not meet C. When this *profile curve* C is revolved around the axis A, it sweeps out a surface of revolution M." For simplicity, he...
  43. Gene Naden

    I Do Isometries Preserve Covariant Derivatives?

    O'Neill's Elementary Differential Geometry, in problem 3.4.5, asks the student to prove that isometries preserve covariant derivatives. Before solving the problem in general, I decided to work through the case where the isometry is a simple inversion: ##F(p)=-p##, using a couple of simple vector...
  44. Gene Naden

    I Connection forms and dual 1-forms for cylindrical coordinate

    I ran across exercise 2.8.4 in Oneill's Elementary Differential Geometry. It says "Given a frame field ##E_1## and ##E_2## on ##R^2## there is an angle function ##\psi## such that ##E_1=\cos(\psi)U_1+\sin(\psi)U_2##, ##E_2=-\sin(\psi)U_1+\cos(\psi)U2## (where ##U_1##, ##U_2##, ##U_3## are the...
  45. Bill2500

    I Topology vs Differential Geometry

    Hello. I am studying Analysis on Manifolds by Munkres. My aim is to be able to study by myself Spivak's Differential Geometry books. The problems is that the proof in Analysis on Manifolds seem many times difficult to understand and I am having SERIOUS trouble picturing myself coming up with...
  46. shahbaznihal

    I Question in Tensor Calculus

    I am doing a problem from Schutz, Introduction to general relativity.The question asks you to find a coordinate transformation to a local inertial frame from a weak field Newtonian metric tensor ##(ds^2=-(1+2\phi)dt^2+(1-2\phi)(dx^2+dy^2+dz^2))##. I looked at the solution from a manual and it...
  47. Abhishek11235

    A Penrose paragraph on Bundle Cross-section?

    I am reading "Road to Reality" by Rogen Penrose. In chapter 15, Fibre and Gauge Connection ,while going through Clifford Bundle, he says: ."""" ...Of course, this in itself does not tell us why the Clifford bundle has no continuous cross-sections. To understand this it will be helpful to look...
  48. Abhishek11235

    A Normal to coordinate curve

    Let $$\phi(x^1,x^2...,x^n) =c$$ be a surface. What is unit Normal to the surface? I know how to find equation of normal to a surface. It is given by: $$\hat{e_{n}}=\frac{\nabla\phi}{|\nabla\phi|}$$ However the answer is given using metric tensor which I am not able to derive. Here is the...
  49. W

    Question about Spherical Metric and Approximations

    Homework Statement This is Problem 2 from Chapter 1, Section V of A. Zee's Einstein Gravity in a Nutshell. Zee asks us to imagine a colony of "eskimo mites" that live at the north pole. The geometers of the colony have measured the following metric of their world to second order (with the...
  50. J

    A Constructing a sequence in a manifold

    Given S is a submanifold of M such that every smooth function on S can be extended to a smooth function to a neighborhood W of S in M. I want to show that S is embedded submanifold. My attempt: Suppose S is not embedded. Then there is a point p that is not contained in any slice chart. Since a...
Top