buffordboy23
- 545
- 2
Homework Statement
Test the series \sum^{\infty}_{n=2} \frac{1}{ln\left(n\right)} for convergence.
The attempt at a solution
My thoughts are a comparison test with the harmonic series. It's clear that 1/ln(n) > 1/n for n \geq 2. This implies that
\sum^{\infty}_{n=2} \frac{1}{ln\left(n\right)} \geq \sum^{\infty}_{n=2} \frac{1}{n} = \left(\sum^{\infty}_{n=2} \frac{1}{n}\right) + 1 - 1 = \left(\sum^{\infty}_{n=1} \frac{1}{n}\right) - 1Is it sufficient to say that
\left(\frac{1}{ln\left(2\right)} - \frac{1}{2}\right) + \left(\frac{1}{ln\left(3\right)} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{ln\left(N\right)} - \frac{1}{N}\right) \geq 1
for some integer N (I think N=3 or 4...have to check again), so that
\sum^{\infty}_{n=2} \frac{1}{ln\left(n\right)} \geq \sum^{\infty}_{n=1} \frac{1}{n}
and so the series must diverge. This makes sense but I wonder if there is a simpler way to express the divergence.
Test the series \sum^{\infty}_{n=2} \frac{1}{ln\left(n\right)} for convergence.
The attempt at a solution
My thoughts are a comparison test with the harmonic series. It's clear that 1/ln(n) > 1/n for n \geq 2. This implies that
\sum^{\infty}_{n=2} \frac{1}{ln\left(n\right)} \geq \sum^{\infty}_{n=2} \frac{1}{n} = \left(\sum^{\infty}_{n=2} \frac{1}{n}\right) + 1 - 1 = \left(\sum^{\infty}_{n=1} \frac{1}{n}\right) - 1Is it sufficient to say that
\left(\frac{1}{ln\left(2\right)} - \frac{1}{2}\right) + \left(\frac{1}{ln\left(3\right)} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{ln\left(N\right)} - \frac{1}{N}\right) \geq 1
for some integer N (I think N=3 or 4...have to check again), so that
\sum^{\infty}_{n=2} \frac{1}{ln\left(n\right)} \geq \sum^{\infty}_{n=1} \frac{1}{n}
and so the series must diverge. This makes sense but I wonder if there is a simpler way to express the divergence.
Last edited: