evinda said:
I like Serena said:
Isn't the first step where it says in the proof in http://mathhelpboards.com/number-theory-27/test-whether-integer-prime-22804-post103344.html#post103344 that $\mathit\Pi > 2^k\cdot k! > (2k/e)^k$ by lemma 3.6.8? (Wondering)
Yes. Do we use this somehow to conclude that $k=O{\left( \frac{\log{\mathit\Pi}}{\log{\log{\mathit\Pi}}}\right)}$ ? (Thinking)
I like Serena said:
Yes. Can't the next step be similar to what we have in post http://mathhelpboards.com/number-theory-27/test-whether-integer-prime-22804-post103372.html#post103372?
That is, we're taking logarithms,
$$\ln\mathit\Pi > k\cdot (\ln k + \ln 2 - 1)\tag{3.6.19a}$$
(Thinking)
evinda said:
So then we suppose that $k \geq \frac{\ln{\mathit\Pi}}{\ln{\ln{\mathit\Pi}}}$, in order to get a contradiction.
Using the relation $\ln{\mathit\Pi}>k(\ln{k}+\ln{2}-1)$ we get that
$$\ln{\mathit\Pi}> \frac{\ln{\mathit\Pi}}{\ln{\ln{\mathit\Pi}}}\left( \ln{\ln{\mathit\Pi}}-\ln{\ln{\ln{\Pi}}}+\ln{2}-1\right) \\ \Rightarrow \ln{\mathit\Pi} \ln{\ln{\mathit\Pi}}> \ln{\mathit\Pi} \ln{\ln{\mathit\Pi}}-\ln{\mathit\Pi} \ln{\ln{\ln{\mathit\Pi}}}+ \ln{2} \ln{\mathit\Pi}-\ln{\mathit\Pi} \\ \Rightarrow \ln{\mathit\Pi} (\ln{(\ln{\ln{\mathit\Pi}})}+1-\ln{2})>0$$
Do we now look at the function $f(x)= \ln{x}(\ln{\ln{\ln{x}}}+1-\ln{2})$ ?
If so, accrding to Wolfram, it has one solution and its derivate has no solution. What can we get from this? (Thinking)
Isn't that expression true for sufficiently large $x$? And the function positive as well?
Then it won't lead to a contradiction. (Worried)In the argument given in http://mathhelpboards.com/number-theory-27/test-whether-integer-prime-22804-post103374.html#post103374, we assumed that $k \ge \frac{2N}{\ln N}$. Note the extra factor $2$.
So let's first define $M=\ln\mathit\Pi$, and let's assume that $k\ge \frac{2M}{\ln M}$ for a contradiction.
Then we get:
$$M>k\cdot(\ln k + \ln 2 - 1) \tag{3.6.19a}$$
and it follows, when $\ln M > 0$, that:
$$M>\frac{2M}{\ln M}\cdot\left(\ln\left(\frac{2M}{\ln M}\right) + \ln 2 - 1\right) \\
\Rightarrow\quad\frac 12\ln M > \ln\left(\frac{2M}{\ln M}\right)+ \ln 2 - 1 \\
\Rightarrow\quad\frac 12\ln M > \ln M - \ln\ln M+ 2\ln 2 - 1 \\
\Rightarrow\quad(1-\frac 12)\ln M < \ln\ln M-2\ln 2 + 1$$
so by obvious transformations,
$$(1-\frac 12)\ln M < \ln\ln M-2\ln 2 + 1\tag{3.6.20a}$$
Now we can look at the function $f: x \mapsto (1-\frac 12)\ln x - \ln\ln x + 2\ln 2 - 1$, which is defined for $x > 1$, can't we? (Wondering)