MHB Thank you! I'm glad it was helpful.

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integers
AI Thread Summary
The discussion centers on proving that each term of the sequence defined by a_n = 160{n+6 choose 6} is an integer for n ≥ 3. The proof uses mathematical induction, starting with the base case where a_3 is calculated and shown to be an integer. The inductive step demonstrates that if the formula holds for n, it also holds for n+1, reinforcing the integer property. Corrections to the original formula were acknowledged, confirming the validity of the approach. The conclusion emphasizes that the result follows from the properties of binomial coefficients, which are inherently integers.
Albert1
Messages
1,221
Reaction score
0
$a_1=3,a_2=5757,\,\, a_n=\dfrac {7(a_a+a_2+-------+a_n)}{n}, \,\, (n\geq2)\,\, prove \,\,each\,\, term\,\, of\,\, a_n\,\,
is \,\, an \,\, integer$

correction :
$a_1=3,a_2=5757,\,\, a_n=\dfrac {7(a_1+a_2+-------+a_{n-1})}{n}, \,\, (n\geq2)\,\, prove \,\,each\,\, term\,\, of\,\, a_n\,\,
is \,\, an \,\, integer$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$a_1=3,a_2=5757,\,\, a_n=\dfrac {7(a_{\color{red}1}+a_2+-------+a_{n{\color{red}-1}})}{n}, \,\, (n\geq2)\,\, prove \,\,each\,\, term\,\, of\,\, a_n\,\,
is \,\, an \,\, integer$
[sp]Assuming that I'm right in making those corrections to the question, I claim that $$a_n = 160{n+6\choose6}$$ for all $n\geqslant3$. The result then follows because binomial coefficients are integers.

To prove the claimed result by induction, check first that $a_1+a_2 = 3+5757 = 5760 = 2^7\cdot3^2\cdot5$, so that $a_3 = \dfrac{2^7\cdot3^2\cdot5\cdot7}3 = 2^7\cdot3\cdot5\cdot7.$ But $$160{9\choose6} = 2^5\cdot5\cdot\frac{9\cdot8\cdot7}{1\cdot2\cdot3} = 2^7\cdot3\cdot5\cdot7.$$ That establishes the base case $n=3$.

Now suppose that the result is true for $n$. Since $a_n = \frac7n(a_1+a_2 + \ldots + a_{n-1})$, it follows that $$a_1+a_2 + \ldots + a_{n-1} = \frac{na_n}7 = \frac{160n}7{n+6\choose6},$$ and so $$a_1+a_2 + \ldots + a_n = \frac{160n}7{n+6\choose6} + 160{n+6\choose6} = \frac{160(n+7)}7{n+6\choose6}.$$ Therefore $$a_{n+1} = \frac7{n+1}(a_1+a_2 + \ldots + a_n) = \frac{160(n+7)}{n+1}{n+6\choose6} = \frac{160(n+7)\cdot (n+6)!}{(n+1)\cdot6!\cdot n!} = \frac{160(n+7)!}{6!(n+1)!} = 160{n+7\choose n+1} = 160{n+7\choose 6}.$$ That completes the inductive step.[/sp]
 
Opalg said:
[sp]Assuming that I'm right in making those corrections to the question, I claim that $$a_n = 160{n+6\choose6}$$ for all $n\geqslant3$. The result then follows because binomial coefficients are integers.

To prove the claimed result by induction, check first that $a_1+a_2 = 3+5757 = 5760 = 2^7\cdot3^2\cdot5$, so that $a_3 = \dfrac{2^7\cdot3^2\cdot5\cdot7}3 = 2^7\cdot3\cdot5\cdot7.$ But $$160{9\choose6} = 2^5\cdot5\cdot\frac{9\cdot8\cdot7}{1\cdot2\cdot3} = 2^7\cdot3\cdot5\cdot7.$$ That establishes the base case $n=3$.

Now suppose that the result is true for $n$. Since $a_n = \frac7n(a_1+a_2 + \ldots + a_{n-1})$, it follows that $$a_1+a_2 + \ldots + a_{n-1} = \frac{na_n}7 = \frac{160n}7{n+6\choose6},$$ and so $$a_1+a_2 + \ldots + a_n = \frac{160n}7{n+6\choose6} + 160{n+6\choose6} = \frac{160(n+7)}7{n+6\choose6}.$$ Therefore $$a_{n+1} = \frac7{n+1}(a_1+a_2 + \ldots + a_n) = \frac{160(n+7)}{n+1}{n+6\choose6} = \frac{160(n+7)\cdot (n+6)!}{(n+1)\cdot6!\cdot n!} = \frac{160(n+7)!}{6!(n+1)!} = 160{n+7\choose n+1} = 160{n+7\choose 6}.$$ That completes the inductive step.[/sp]
sorry a typo
Yes you are right in making those corrections to the question
very good solution !
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
4
Views
3K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
3
Views
1K
Back
Top