Thank you! I'm glad it was helpful.

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary
SUMMARY

The discussion centers on proving that the sequence defined by $a_n = \frac{7(a_1 + a_2 + \ldots + a_{n-1})}{n}$, with initial values $a_1 = 3$ and $a_2 = 5757$, results in integer values for each term $a_n$. The corrected formula for $a_n$ is established as $a_n = 160{n+6\choose6}$ for all $n \geq 3$. The proof utilizes mathematical induction, confirming the base case and the inductive step, thereby validating the integer nature of the sequence.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with binomial coefficients
  • Basic knowledge of sequences and series
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study mathematical induction techniques in depth
  • Explore properties and applications of binomial coefficients
  • Learn about sequences and series in advanced mathematics
  • Practice algebraic manipulation of sequences and recursive definitions
USEFUL FOR

Mathematicians, educators, and students engaged in advanced mathematics, particularly those interested in sequences, series, and proof techniques.

Albert1
Messages
1,221
Reaction score
0
$a_1=3,a_2=5757,\,\, a_n=\dfrac {7(a_a+a_2+-------+a_n)}{n}, \,\, (n\geq2)\,\, prove \,\,each\,\, term\,\, of\,\, a_n\,\,
is \,\, an \,\, integer$

correction :
$a_1=3,a_2=5757,\,\, a_n=\dfrac {7(a_1+a_2+-------+a_{n-1})}{n}, \,\, (n\geq2)\,\, prove \,\,each\,\, term\,\, of\,\, a_n\,\,
is \,\, an \,\, integer$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$a_1=3,a_2=5757,\,\, a_n=\dfrac {7(a_{\color{red}1}+a_2+-------+a_{n{\color{red}-1}})}{n}, \,\, (n\geq2)\,\, prove \,\,each\,\, term\,\, of\,\, a_n\,\,
is \,\, an \,\, integer$
[sp]Assuming that I'm right in making those corrections to the question, I claim that $$a_n = 160{n+6\choose6}$$ for all $n\geqslant3$. The result then follows because binomial coefficients are integers.

To prove the claimed result by induction, check first that $a_1+a_2 = 3+5757 = 5760 = 2^7\cdot3^2\cdot5$, so that $a_3 = \dfrac{2^7\cdot3^2\cdot5\cdot7}3 = 2^7\cdot3\cdot5\cdot7.$ But $$160{9\choose6} = 2^5\cdot5\cdot\frac{9\cdot8\cdot7}{1\cdot2\cdot3} = 2^7\cdot3\cdot5\cdot7.$$ That establishes the base case $n=3$.

Now suppose that the result is true for $n$. Since $a_n = \frac7n(a_1+a_2 + \ldots + a_{n-1})$, it follows that $$a_1+a_2 + \ldots + a_{n-1} = \frac{na_n}7 = \frac{160n}7{n+6\choose6},$$ and so $$a_1+a_2 + \ldots + a_n = \frac{160n}7{n+6\choose6} + 160{n+6\choose6} = \frac{160(n+7)}7{n+6\choose6}.$$ Therefore $$a_{n+1} = \frac7{n+1}(a_1+a_2 + \ldots + a_n) = \frac{160(n+7)}{n+1}{n+6\choose6} = \frac{160(n+7)\cdot (n+6)!}{(n+1)\cdot6!\cdot n!} = \frac{160(n+7)!}{6!(n+1)!} = 160{n+7\choose n+1} = 160{n+7\choose 6}.$$ That completes the inductive step.[/sp]
 
Opalg said:
[sp]Assuming that I'm right in making those corrections to the question, I claim that $$a_n = 160{n+6\choose6}$$ for all $n\geqslant3$. The result then follows because binomial coefficients are integers.

To prove the claimed result by induction, check first that $a_1+a_2 = 3+5757 = 5760 = 2^7\cdot3^2\cdot5$, so that $a_3 = \dfrac{2^7\cdot3^2\cdot5\cdot7}3 = 2^7\cdot3\cdot5\cdot7.$ But $$160{9\choose6} = 2^5\cdot5\cdot\frac{9\cdot8\cdot7}{1\cdot2\cdot3} = 2^7\cdot3\cdot5\cdot7.$$ That establishes the base case $n=3$.

Now suppose that the result is true for $n$. Since $a_n = \frac7n(a_1+a_2 + \ldots + a_{n-1})$, it follows that $$a_1+a_2 + \ldots + a_{n-1} = \frac{na_n}7 = \frac{160n}7{n+6\choose6},$$ and so $$a_1+a_2 + \ldots + a_n = \frac{160n}7{n+6\choose6} + 160{n+6\choose6} = \frac{160(n+7)}7{n+6\choose6}.$$ Therefore $$a_{n+1} = \frac7{n+1}(a_1+a_2 + \ldots + a_n) = \frac{160(n+7)}{n+1}{n+6\choose6} = \frac{160(n+7)\cdot (n+6)!}{(n+1)\cdot6!\cdot n!} = \frac{160(n+7)!}{6!(n+1)!} = 160{n+7\choose n+1} = 160{n+7\choose 6}.$$ That completes the inductive step.[/sp]
sorry a typo
Yes you are right in making those corrections to the question
very good solution !
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K