I The asymptotic behaviour of Elliptic integral near k=1

julian
Science Advisor
Gold Member
Messages
860
Reaction score
365
TL;DR
I'm looking at a proof of the asymptotic expression for the Elliptic function of the first kind and I'm having trouble understanding a step in the proof.
I'm looking at a proof of the asymptotic expression for the Elliptic function of the first kind

https://math.stackexchange.com/ques...ptotic-behavior-of-elliptic-integral-near-k-1

and I'm having trouble understanding this step in the proof:
$$
\begin{align*}
\frac{1}{2} \int_0^k \dfrac{dx}{1 - x} \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } + \mathcal{O} (1) = \frac{1}{2} \int_0^k \dfrac{dx}{1 - x} + \mathcal{O} \left( \int_0^k \dfrac{1-k}{1-x} dx \right) + \mathcal{O} (1)
\end{align*}
$$
I've written
$$
\begin{align*}
\frac{1}{2} \int_0^k \dfrac{dx}{1 - x} \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } &= \frac{1}{2} \int_0^k \dfrac{dx}{1 - x} + \frac{1}{2} \int_0^k \frac{dx}{1 - x} \left( \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } - 1 \right)
\nonumber \\
&= \frac{1}{2} \int_0^k \dfrac{dx}{1 - x} - \frac{1}{2} \int_0^k \dfrac{1-k}{1-x} dx + \frac{1}{2} \int_0^k \frac{dx}{1 - x} \left( \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } - k \right)
\end{align*}
$$
But not sure where to go from here.
 
Last edited:
Physics news on Phys.org
Work towards proving that the last integral is less or equal than ##\int_0^k \frac{1-k}{1-x}dx##. I think it is sufficient to show that for "proper" values of ##x## and ##k## it is $$\frac{\sqrt{1-x^2}}{\sqrt{1-k^2x^2}}\leq 1$$
 
So for ##0 \leq k < 1## we have for ##0 \leq x \leq k## that

\begin{align*}
\dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } - k < 1 - k .
\end{align*}

Huzzah.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K