The asymptotic behaviour of Elliptic integral near k=1

Click For Summary
SUMMARY

The discussion focuses on the asymptotic behavior of the Elliptic integral of the first kind as k approaches 1. The proof involves manipulating integrals, specifically the expression $$\frac{1}{2} \int_0^k \dfrac{dx}{1 - x} \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} }$$ and showing that it can be bounded by $$\int_0^k \frac{1-k}{1-x}dx$$. The key insight is that for values of x and k within the specified ranges, the inequality $$\frac{\sqrt{1-x^2}}{\sqrt{1-k^2x^2}} \leq 1$$ holds true, leading to a successful conclusion of the proof.

PREREQUISITES
  • Understanding of Elliptic integrals and their properties
  • Familiarity with asymptotic analysis in mathematical proofs
  • Knowledge of integral calculus, particularly improper integrals
  • Proficiency in manipulating inequalities and limits in mathematical expressions
NEXT STEPS
  • Study the properties of Elliptic functions and their applications in complex analysis
  • Learn about asymptotic expansions and their significance in mathematical proofs
  • Explore techniques for bounding integrals and inequalities in calculus
  • Investigate the behavior of integrals involving square roots and rational functions
USEFUL FOR

Mathematicians, researchers in theoretical physics, and students studying advanced calculus or analysis who are interested in the properties and applications of Elliptic integrals.

julian
Science Advisor
Gold Member
Messages
860
Reaction score
365
TL;DR
I'm looking at a proof of the asymptotic expression for the Elliptic function of the first kind and I'm having trouble understanding a step in the proof.
I'm looking at a proof of the asymptotic expression for the Elliptic function of the first kind

https://math.stackexchange.com/ques...ptotic-behavior-of-elliptic-integral-near-k-1

and I'm having trouble understanding this step in the proof:
$$
\begin{align*}
\frac{1}{2} \int_0^k \dfrac{dx}{1 - x} \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } + \mathcal{O} (1) = \frac{1}{2} \int_0^k \dfrac{dx}{1 - x} + \mathcal{O} \left( \int_0^k \dfrac{1-k}{1-x} dx \right) + \mathcal{O} (1)
\end{align*}
$$
I've written
$$
\begin{align*}
\frac{1}{2} \int_0^k \dfrac{dx}{1 - x} \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } &= \frac{1}{2} \int_0^k \dfrac{dx}{1 - x} + \frac{1}{2} \int_0^k \frac{dx}{1 - x} \left( \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } - 1 \right)
\nonumber \\
&= \frac{1}{2} \int_0^k \dfrac{dx}{1 - x} - \frac{1}{2} \int_0^k \dfrac{1-k}{1-x} dx + \frac{1}{2} \int_0^k \frac{dx}{1 - x} \left( \dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } - k \right)
\end{align*}
$$
But not sure where to go from here.
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Work towards proving that the last integral is less or equal than ##\int_0^k \frac{1-k}{1-x}dx##. I think it is sufficient to show that for "proper" values of ##x## and ##k## it is $$\frac{\sqrt{1-x^2}}{\sqrt{1-k^2x^2}}\leq 1$$
 
  • Like
Likes   Reactions: julian
So for ##0 \leq k < 1## we have for ##0 \leq x \leq k## that

\begin{align*}
\dfrac{ \sqrt{1 - x^2} }{ \sqrt{1 - k^2 x^2} } - k < 1 - k .
\end{align*}

Huzzah.
 
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K