The atomic Coulomb potential extends to infinity?

Click For Summary
SUMMARY

The discussion centers on the interpretation of the statement that "the resulting electronic charge distribution extends to infinity" in the context of the Coulomb potential in atomic physics. Participants clarify that the electronic wave-function theoretically has a non-zero probability of detecting an electron at any distance from the nucleus, despite the practical probability distribution dropping off rapidly beyond a few times the Bohr radius. The text referenced is "Introduction to Nuclear Physics" by Kenneth S. Krane, which some participants find ambiguous regarding the interpretation of wave functions and charge distributions.

PREREQUISITES
  • Understanding of Coulomb potential in atomic physics
  • Familiarity with wave functions and their probabilistic interpretations
  • Knowledge of the Bohr radius and its significance in atomic structure
  • Basic concepts of quantum mechanics, particularly related to electron behavior in atoms
NEXT STEPS
  • Research the mathematical formulation of the Coulomb potential in quantum mechanics
  • Study the properties and implications of wave functions in quantum mechanics
  • Examine the relationship between wave functions and electron probability distributions
  • Explore the historical context of Schrödinger's interpretation of wave functions and Born's probabilistic interpretation
USEFUL FOR

Students and professionals in nuclear physics, quantum mechanics enthusiasts, and anyone seeking to deepen their understanding of atomic structure and electron behavior.

aaronll
Messages
23
Reaction score
4
I'm studying nuclear physics in a text, but at one point that is said: "Both the Coulomb potential that binds the atom and the resulting electronic charge distribution extends to infinity" , I don't understand what is that "resulting electronic charge distribution extends to infinity" what they mean? ( maybe I misunderstand the phrase but i don't know)
thanks
 
Last edited by a moderator:
Physics news on Phys.org
aaronll said:
I'm studying nuclear physics in a text, but at one point that is said: "Both the Coulomb potential that binds the atom and the resulting electronic charge distribution extends to infinity" , I don't understand what is that "resulting electronic charge distribution extends to infinity" what they mean? ( maybe I misunderstand the phrase but i don't know)
thanks

I assume by "charge distribution" it means the wave-function for the electron. And, theoretically the spatial wave-function for the electron is non-zero everywhere. I.e. no matter how far the distance from the nucleus, there is still a non-zero probability of detecting the electron there.

In practical terms, of course, the electron probability distribution drops off to nearly zero very quickly - of the order of magnitude of a few times the Bohr radius.
 
  • Like
Likes   Reactions: Lord Jestocost, vanhees71 and aaronll
PeroK said:
I assume by "charge distribution" it means the wave-function for the electron. And, theoretically the spatial wave-function for the electron is non-zero everywhere. I.e. no matter how far the distance from the nucleus, there is still a non-zero probability of detecting the electron there.

In practical terms, of course, the electron probability distribution drops off to nearly zero very quickly - of the order of magnitude of a few times the Bohr radius.
Thank you
 
Which text is this? I guess, I'll like to avoid its use ;-)).
 
vanhees71 said:
Which text is this? I guess, I'll like to avoid its use ;-)).
Is the "Introduction to Nuclear Physics" written by Kennet S. Krane, I believe is a good book
 
Yes, I like it too, but are there really such statements as that the long-ranged nature of the Coulomb potential of the nucleus in an atom were "resulting electronic charge distribution extends to infinity"? That doesn't make sense or at least hints at an pretty unusual interpretation of the (energy-eigen) wave functions of the electron(s) in atoms. It sounds something like Schrödinger's very first interpretation of his ##\psi(t,\vec{x})## before Born's probabilistic interpretation. Even then it's strange since as the hydrogen wave functions show, the bound states all fall exponentially for ##r \rightarrow \infty##, and from that the typical atomic length scales are determined by the Born radius of about ##0.5 \mathring{\text{A}}##.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K