The automorphic group is abelian

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Group
Click For Summary
SUMMARY

The automorphic group of integers, denoted as Aut(ℤn), is confirmed to be an abelian group of order φ(n). The discussion establishes that n is cyclic and generated by a single element, leading to φ(n) possible generators. The operation within Aut(ℤn) is function composition, and it is necessary to demonstrate that the composition of any two automorphisms commutes. The group Aut(ℤn) is isomorphic to n*, the multiplicative group of integers that are coprime to n, which is also abelian.

PREREQUISITES
  • Cyclic groups and their properties
  • Understanding of the Euler's totient function φ(n)
  • Function composition in group theory
  • Basic number theory, particularly gcd and modular arithmetic
NEXT STEPS
  • Study the properties of cyclic groups and their generators
  • Learn about the Euler's totient function and its applications
  • Explore isomorphisms between groups, particularly in the context of Aut(ℤn) and n*
  • Investigate the implications of Lagrange's theorem in group theory
USEFUL FOR

Mathematicians, particularly those focused on abstract algebra, group theory enthusiasts, and anyone studying the properties of automorphic groups and cyclic structures.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to show that $\text{Aut}(\mathbb{Z}_n)$ is an abelian group of order $\phi (n)$.

We have that $\mathbb{Z}_n$ is cyclic and it is generated by one element.

Does it have $\phi (n)$ possible generators? (Wondering)

Let $h\in \text{Aut}(\mathbb{Z}_n)$.
Then $h(k)=h(1+1+\dots +1)=h(1)+h(1)+\dots +h(1)=kh(1)$, since $\mathbb{Z}_n$ is cyclic with generator $1$ under the addition and $h$ is an homomorphism.

Since $h(1)\in \mathbb{Z}_n$, let $h(1)=a$, we have the mapping $$k\mapsto ak$$

Do we take two elements $h_1,h_2\in\text{Aut}(\mathbb{Z}_n)$ and show that $$h_1(i)\cdot h_2(j)=h_2(j)\cdot h_1(i)$$ ? (Wondering)

We have $$h_1(i)\cdot h_2(j)=ih_1(1)jh_2(1)$$ How could we continue? (Wondering)

Or do we have to show that this group is isomorphic to an abelian group? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Do we take two elements $h_1,h_2\in\text{Aut}(\mathbb{Z}_n)$ and show that $$h_1(i)\cdot h_2(j)=h_2(j)\cdot h_1(i)$$ ? (Wondering)

We have $$h_1(i)\cdot h_2(j)=ih_1(1)jh_2(1)$$ How could we continue? (Wondering)

Or do we have to show that this group is isomorphic to an abelian group? (Wondering)

Hey mathmari! (Smile)

Not quite.
The operation in $\text{Aut}(\mathbb{Z}_n)$ is function composition.
So we need to verify if $h_1 \circ h_2=h_2\circ h_1$.
That is, that for any $i \in \mathbb{Z}_n$, we have $h_1(h_2(i)) = h_2(h_1(i))$. (Thinking)
 
I like Serena said:
The operation in $\text{Aut}(\mathbb{Z}_n)$ is function composition.
So we need to verify if $h_1 \circ h_2=h_2\circ h_1$.
That is, that for any $i \in \mathbb{Z}_n$, we have $h_1(h_2(i)) = h_2(h_1(i))$. (Thinking)

Ah ok... (Thinking)

So, we have the following:

$$h_1(h_2(i)) =h_1(ih_2(1))=h_1(h_2(1)+h_2(1)+\dots +h_2(1))$$ We add $i$ times $h_2(1)$. Since $h_1$ is an homomorphism, we get $$h_1(h_2(1)+h_2(1)+\dots +h_2(1))=h_1(h_2(1))+h_1(h_2(1))+\dots +h_1(h_2(1))=ih_1(h_2(1))$$

Since $h_2(1)\in \mathbb{Z}_n$ we have that $$h_1(h_2(1))=h_2(1)h_1(1)$$ right? (Wondering)

Therefore, $$h_1(h_2(i))=ih_1(h_2(1))=ih_2(1)h_1(1)$$ Calculating the other part, we get

$$h_2(h_1(i)) =h_2(ih_1(1))=h_2(h_1(1)+h_1(1)+\dots +h_1(1))=h_2(h_1(1))+h_2(h_1(1))+\dots +h_2(h_1(1))=ih_2(h_1(1))=ih_1(1)h_2(1)$$ Is everything correct so far? (Wondering) Does it stand that $h_2(1)h_1(1)=h_1(1)h_2(1)$ ? (Wondering)
 
mathmari said:
$$h_2(h_1(i)) =h_2(ih_1(1))=h_2(h_1(1)+h_1(1)+\dots +h_1(1))=h_2(h_1(1))+h_2(h_1(1))+\dots +h_2(h_1(1))=ih_2(h_1(1))=ih_1(1)h_2(1)$$ Is everything correct so far? (Wondering)

Yes.
Note that it suffices to verify what happens to the generator(s). (Thinking)
Does it stand that $h_2(1)h_1(1)=h_1(1)h_2(1)$ ? (Wondering)

Yes, since we're talking about regular multiplication, which is abelian. (Nod)
 
I like Serena said:
Yes.
Note that it suffices to verify what happens to the generator(s). (Thinking)

When $i$ is a generator then $h_1(i)$ and $h_2(i)$ are also generators, right? (Wondering)

To do the above we suppose $i$ to be a generator, right? (Wondering)
I like Serena said:
Yes, since we're talking about regular multiplication, which is abelian. (Nod)

What do you mean by "regular multiplication" ? (Wondering)
 
Last edited by a moderator:
Maybe the following will help. What you are trying to do is show that $Aut(Z_n)$ is isomorphic to $Z_n^{\ast}$, the multiplicative group of integers that are prime to n. This latter group is obviously abelian of order $\phi(n)$. So define $$f:Aut(Z_n)\rightarrow Z_n^{\ast}\text{ by }\,\forall h\in Aut(Z_n),\,\, f(h)\equiv h(1)\pmod{n}$$
It's pretty straight forward to show that f is indeed an isomorphism.
 
Something that make prove to be of general use, here, is the following fact:

If $G = \langle a\rangle$ is a cyclic group of order $n$, then the order of $a^k$ (and thus the order of $\langle a^k \rangle$ as a subgroup of $G$) is:

$|a^k| = \dfrac{n}{\gcd(k,n)}$.

From which it is easy to see that $|a^k| = n \iff \gcd(k,n) = 1$.

I urge you to try to prove this basic result.

(For cyclic groups written additively as $\Bbb Z_n$, this becomes (using $a = 1$):

$|k| = \dfrac{n}{\gcd(k,n)}$, where $|k|$ is the least positive integer $t$ such that $kt = 0$ (mod $n$)).

For example, in $\Bbb Z_{24}$ we have:

$|16| = \dfrac{24}{\gcd(16,24)} = \dfrac{24}{8} = 3$, and in fact:

$16 \neq 0$ (mod 24)
$32 = 8 \neq 0$ (mod 24) (so the order of 16 is not 2)
$48 = 24 + 24 = 0 + 0 = 0$ (mod 24), so the order of 16 is indeed 3.
 
Deveno said:
If $G = \langle a\rangle$ is a cyclic group of order $n$, then the order of $a^k$ (and thus the order of $\langle a^k \rangle$ as a subgroup of $G$) is:

$|a^k| = \dfrac{n}{\gcd(k,n)}$.

I urge you to try to prove this basic result.

We have that $G=\langle a\rangle$ is a cyclic group of order $n$. That means that $a^n=e_G$.

Suppose that the order of $a^k$ is $m$. That means that $(a^k)^m=e_G \Rightarrow a^{km}=e_G$.

By Lagrange's theorem, we have that the order of a subroup divides the order of the group, so $m\mid n$.

How could we continue? (Wondering)

We have that $\mathbb{Z}_n$ is a cyclic group of order $n$.
I got stuck right now... How do we use the above formula to show that the order of $\text{Aut}(\mathbb{Z}_n)$ is $\phi (n)$ ? (Wondering)
 
You'll have to be a bit clever.

You know that $m = \dfrac{n}{d}$ for some $d$. Good, that's a start.

But you haven't used any properties of the gcd, yet.
 
  • #10
We have that $G=\langle a\rangle$ is a cyclic group of order $n$. That means that $a^n=1$.

We have that $\gcd (k,n)$ divides $k$, so $\frac{k}{\gcd (k,n)}$ is an integer. So, $n$ divides $\frac{kn}{\gcd (k,n)}$.

Since $a^n=1$ and $n$ divides $\frac{kn}{\gcd (k,n)}$, we have that $a^{\frac{kn}{\gcd (k,n)}}=1 \Rightarrow (a^k)^{\frac{n}{\gcd (k,n)}}=1$.

To show that $\frac{n}{\gcd (k,n)}$ is the order of $a^k$, we have to show that there is no $x<\frac{n}{\gcd (k,n)}$ such that $(a^k)^x=1$.

Suppose there is such a $x<\frac{n}{\gcd (k,n)}$ such that $(a^k)^x=1$.

Then $(a^k)^x=1 \Rightarrow a^{kx}=1$.

$n$ must divide $kx$, that means that $\exists s\in \mathbb{Z} : kx=ns$.

Dividing the last equation by $\gcd (k,n)$ we get $$\frac{k}{\gcd (k,n)} x=\frac{n}{\gcd (k,n)}s$$
We have that $$\frac{n}{\gcd (k,n)}\mid \frac{n}{\gcd (k,n)}s \Rightarrow \frac{n}{\gcd (k,n)}\mid \frac{k}{\gcd (k,n)} x$$

We have that $\gcd \left (\frac{n}{\gcd (k,n)}, \frac{k}{\gcd (k,n)}\right )=1$, so it implies that $$\frac{n}{\gcd (k,n)}\mid x \Rightarrow \frac{n}{\gcd (k,n)}\leq x$$ That is a contradiction.

Therefore, $\frac{n}{\gcd (k,n)}$ is the smallest integer such that $(a^k)^{\frac{n}{\gcd (k,n)}}=1$.

Therefore, the order of $a^k$ is $\frac{n}{\gcd (k,n)}$.

Is this correct? (Wondering)
 
  • #11
The generators of $\mathbb{Z}_n$ are the elements of $\mathbb{Z}_n$ that have order $n$.

From the formula $$|k| = \dfrac{n}{\gcd(k,n)}$$ we have that an element $k$ of $\mathbb{Z}_n$ has order $n$ iff $\gcd(k,n)=1$.

There are $\phi (n)$ such elements.

Therefore, there are $\phi (n)$ generators of $\mathbb{Z}_n$, so the order of $\text{Aut}(\mathbb{Z}_n)$ is $\phi (n)$, right? (Wondering)
Deveno said:
If $G = \langle a\rangle$ is a cyclic group of order $n$, then the order of $a^k$ (and thus the order of $\langle a^k \rangle$ as a subgroup of $G$) is:

$|a^k| = \dfrac{n}{\gcd(k,n)}$.

From which it is easy to see that $|a^k| = n \iff \gcd(k,n) = 1$.

I urge you to try to prove this basic result.

(For cyclic groups written additively as $\Bbb Z_n$, this becomes (using $a = 1$):

$|k| = \dfrac{n}{\gcd(k,n)}$, where $|k|$ is the least positive integer $t$ such that $kt = 0$ (mod $n$)).
Do we get the formula $|k| = \dfrac{n}{\gcd(k,n)}$ using as a generator of $\mathbb{Z}_n$ the element $1$ ? (Wondering)
 
  • #12
mathmari said:
The generators of $\mathbb{Z}_n$ are the elements of $\mathbb{Z}_n$ that have order $n$.

From the formula $$|k| = \dfrac{n}{\gcd(k,n)}$$ we have that an element $k$ of $\mathbb{Z}_n$ has order $n$ iff $\gcd(k,n)=1$.

There are $\phi (n)$ such elements.

Therefore, there are $\phi (n)$ generators of $\mathbb{Z}_n$, so the order of $\text{Aut}(\mathbb{Z}_n)$ is $\phi (n)$, right? (Wondering)
Do we get the formula $|k| = \dfrac{n}{\gcd(k,n)}$ using as a generator of $\mathbb{Z}_n$ the element $1$ ? (Wondering)

Yes, since $k = k\cdot 1$.
 
  • #13
Ah ok... Thank you very much! (Mmm)

- - - Updated - - -

I like Serena said:
Yes, since we're talking about regular multiplication, which is abelian. (Nod)

Do you mean that since $h_1(1), h_2(1)\in \mathbb{Z}_n$ and $\mathbb{Z}_n$ is abelian we have that $$h_1(1)h_2(1)=h_2(1)h_1(1)$$ ? (Wondering)
 
  • #14
mathmari said:
We have that $G=\langle a\rangle$ is a cyclic group of order $n$. That means that $a^n=1$.

We have that $\gcd (k,n)$ divides $k$, so $\frac{k}{\gcd (k,n)}$ is an integer. So, $n$ divides $\frac{kn}{\gcd (k,n)}$.

Since $a^n=1$ and $n$ divides $\frac{kn}{\gcd (k,n)}$, we have that $a^{\frac{kn}{\gcd (k,n)}}=1 \Rightarrow (a^k)^{\frac{n}{\gcd (k,n)}}=1$.

To show that $\frac{n}{\gcd (k,n)}$ is the order of $a^k$, we have to show that there is no $x<\frac{n}{\gcd (k,n)}$ such that $(a^k)^x=1$.

Suppose there is such a $x<\frac{n}{\gcd (k,n)}$ such that $(a^k)^x=1$.

Then $(a^k)^x=1 \Rightarrow a^{kx}=1$.

$n$ must divide $kx$, that means that $\exists s\in \mathbb{Z} : kx=ns$.

Dividing the last equation by $\gcd (k,n)$ we get $$\frac{k}{\gcd (k,n)} x=\frac{n}{\gcd (k,n)}s$$
We have that $$\frac{n}{\gcd (k,n)}\mid \frac{n}{\gcd (k,n)}s \Rightarrow \frac{n}{\gcd (k,n)}\mid \frac{k}{\gcd (k,n)} x$$

We have that $\gcd \left (\frac{n}{\gcd (k,n)}, \frac{k}{\gcd (k,n)}\right )=1$, so it implies that $$\frac{n}{\gcd (k,n)}\mid x \Rightarrow \frac{n}{\gcd (k,n)}\leq x$$ That is a contradiction.

Therefore, $\frac{n}{\gcd (k,n)}$ is the smallest integer such that $(a^k)^{\frac{n}{\gcd (k,n)}}=1$.

Therefore, the order of $a^k$ is $\frac{n}{\gcd (k,n)}$.

Is this correct? (Wondering)

Seems legit :P
 
  • #15
Thank you very much for your help! (Smile)
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
933
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
610
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
3K