B The average value of S operator

Click For Summary
The discussion centers on the average value of the S operator in the context of spin-orbit coupling in quantum mechanics. It explains that the average value is considered the projection of S onto J, which is derived from the fine-structure Hamiltonian. The commutator calculation shows that the time evolution of the expectation value of S is influenced by its perpendicular component to J, leading to a precession-like behavior. The perpendicular component, S_perp, averages to zero over time, while the parallel component remains constant. This analysis highlights the dynamics of spin in a hydrogen atom under fine-structure effects.
Viona
Messages
49
Reaction score
12
TL;DR
Why the average value of S operator is considered to be the projection of S onto J ?
While reading in the book of Introduction to Quantum Mechanics by David Griffith in the section of Fine structure of Hydrogen: spin- orbit coupling, he said that the average value of S operator is considered to be the projection of S onto J. I could not understand why he assumed that. please help me to understand.
Untitled.png
 
Physics news on Phys.org
Given the fine-structure Hamiltonian ##H = A\vec{L} \cdot \vec{S}##, try to calculate the commutator ##[H,\vec{S}]##. What do you get, in vector form?
 
What I was getting at is that if you do the algebra, I get $$[H,\vec{S}] = iA\vec{S} \times \vec{L} = iA\vec{S} \times \vec{J}$$ where the last step is true because ##\vec{J} = \vec{L} + \vec{S}##. Use the Ehrenfest theorem on this to get $$\frac{d\langle \vec{S} \rangle}{dt} = \frac{A}{\hbar} \langle \vec{S} \times \vec{J} \rangle $$

##\vec{S}## can be split into two components: ##S_{||}## which is parallel to ##\vec{J}## and ##\vec{S}_{\perp}## which is perpendicular to ##\vec{J}##. Since the cross product cancels the parallel part, only the perpendicular part has time dependence (it precesses). The equation for ##\langle \vec{S}_{\perp} \rangle## is the equation for a spinning top (precession). The time averaged value of ##\vec{S}_{\perp}## is zero.
 
Thank you all for useful replies.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...