B The average value of S operator

Click For Summary
The discussion centers on the average value of the S operator in the context of spin-orbit coupling in quantum mechanics. It explains that the average value is considered the projection of S onto J, which is derived from the fine-structure Hamiltonian. The commutator calculation shows that the time evolution of the expectation value of S is influenced by its perpendicular component to J, leading to a precession-like behavior. The perpendicular component, S_perp, averages to zero over time, while the parallel component remains constant. This analysis highlights the dynamics of spin in a hydrogen atom under fine-structure effects.
Viona
Messages
49
Reaction score
12
TL;DR
Why the average value of S operator is considered to be the projection of S onto J ?
While reading in the book of Introduction to Quantum Mechanics by David Griffith in the section of Fine structure of Hydrogen: spin- orbit coupling, he said that the average value of S operator is considered to be the projection of S onto J. I could not understand why he assumed that. please help me to understand.
Untitled.png
 
Physics news on Phys.org
Given the fine-structure Hamiltonian ##H = A\vec{L} \cdot \vec{S}##, try to calculate the commutator ##[H,\vec{S}]##. What do you get, in vector form?
 
What I was getting at is that if you do the algebra, I get $$[H,\vec{S}] = iA\vec{S} \times \vec{L} = iA\vec{S} \times \vec{J}$$ where the last step is true because ##\vec{J} = \vec{L} + \vec{S}##. Use the Ehrenfest theorem on this to get $$\frac{d\langle \vec{S} \rangle}{dt} = \frac{A}{\hbar} \langle \vec{S} \times \vec{J} \rangle $$

##\vec{S}## can be split into two components: ##S_{||}## which is parallel to ##\vec{J}## and ##\vec{S}_{\perp}## which is perpendicular to ##\vec{J}##. Since the cross product cancels the parallel part, only the perpendicular part has time dependence (it precesses). The equation for ##\langle \vec{S}_{\perp} \rangle## is the equation for a spinning top (precession). The time averaged value of ##\vec{S}_{\perp}## is zero.
 
Thank you all for useful replies.
 
An antilinear operator ##\hat{A}## can be considered as, ##\hat{A}=\hat{L}\hat{K}##, where ##\hat{L}## is a linear operator and ##\hat{K} c=c^*## (##c## is a complex number). In the Eq. (26) of the text https://bohr.physics.berkeley.edu/classes/221/notes/timerev.pdf the equality ##(\langle \phi |\hat{A})|\psi \rangle=[ \langle \phi|(\hat{A}|\psi \rangle)]^*## is given but I think this equation is not correct within a minus sign. For example, in the Hilbert space of spin up and down, having...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
1K
Replies
2
Views
737
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
749
  • · Replies 9 ·
Replies
9
Views
3K
Replies
1
Views
821
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K