- #1
- 87
- 2
I have a problem where I have to know the commutation relations for left handed fermions. I know
##\psi_L=\frac{1}{2}(1-\gamma^5)\psi##
##\psi^\dagger_L=\psi^\dagger_L\frac{1}{2}(1-\gamma^5)##
and
## \left\{ \psi(x) , \psi^\dagger(y)\right\} = \delta(x-y)##
So writing
## \left\{P_L\psi(x) , \psi^\dagger(y)P_L\right\} ##
##=P_L\psi(x) \psi^\dagger(y)P_L + \psi^\dagger(y)P_LP_L\psi(x)##
And I don't see how I can go any further.
##\psi_L=\frac{1}{2}(1-\gamma^5)\psi##
##\psi^\dagger_L=\psi^\dagger_L\frac{1}{2}(1-\gamma^5)##
and
## \left\{ \psi(x) , \psi^\dagger(y)\right\} = \delta(x-y)##
So writing
## \left\{P_L\psi(x) , \psi^\dagger(y)P_L\right\} ##
##=P_L\psi(x) \psi^\dagger(y)P_L + \psi^\dagger(y)P_LP_L\psi(x)##
And I don't see how I can go any further.