The connection as a choice of horizontal subspace?

Click For Summary
The discussion centers on understanding the connection in fiber bundle formulations of gauge theory, specifically how to partition the tangent space into vertical and horizontal components. The vertical space consists of vectors tangent to the fiber, while the horizontal space is defined as the complement within the tangent space. A key point of confusion is whether finding the vertical space uniquely determines the horizontal space, as it seems possible to construct the tangent space without a defined connection. The conversation highlights that while one can define horizontal spaces in various ways, they must meet the criteria of being vector subspaces. Ultimately, clarity is achieved regarding the direct sum of vector spaces and the nature of these partitions.
...?
Messages
11
Reaction score
0
Hi,
I'm trying to understand the fiber bundle formulation of gauge theory at the moment, and I'm stuck on the connection. Every reference I've found introduces the idea of a connection on a principle bundle as a kind of partitioning of the tangent space at all points in the total space into a "vertical space" and a "horizontal space". The vertical space Vp consists of vectors in TpP which are also tangent to the fiber at p, and the horizontal space Hp is a set of vectors such that Vp+Hp=TpP.
What I don't understand is why finding Vp doesn't uniquely specify Hp. It should be possible to construct TpP without defining a connection, right? If so, wouldn't Hp just be every element of TpP that is not also in Vp? I don't see how we are free to make this partition ourselves. Where am I going wrong?

Thanks for reading!
 
Physics news on Phys.org
Take R² for instance, and for simplicity, assume that V = {(0,y) | y in R}. Then you're saying "take H:= R² - V". But that's not a subspace! (Perhaps you overlooked the fact that H is supposed to be a vector subspace?)

On the other hand, H:={(x,0) | x in R} is a natural candidate... but there are (infinitely many) other choice as H:={ (x,ax) | x in R} for any a in R would do just as well.
 
quasar987 said:
(Perhaps you overlooked the fact that H is supposed to be a vector subspace?)
Yeah, I did. I was also getting mixed up over how to take the direct sum of two vector spaces. But now I see how it all works. Cheers!
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
8
Views
3K
Replies
3
Views
7K