The deduction of Fermi-Dirac and Bose-Einstein distrbiutions

Click For Summary
SUMMARY

The discussion focuses on the deduction of Fermi-Dirac and Bose-Einstein distributions, specifically the transition from the canonical to the grand canonical partition function. The canonical partition function is expressed as $$Z_{N} = \sum _{\{n_{l}\}} e^{-\beta E(\{n_{l}\})}$$, while the grand canonical partition function is defined as $$Q = \sum _{N} e^{\beta \mu N} Z_{N}$$. The key insight is that the summation over states can be rearranged, allowing the expression $$Q = \prod _{l} \sum _{n_{l}}[e^{-\beta(\varepsilon - \mu)}]^{n_{l}}$$ to be derived, demonstrating the equivalence of summing over states and summing over occupation numbers.

PREREQUISITES
  • Understanding of statistical mechanics concepts, particularly partition functions.
  • Familiarity with canonical and grand canonical ensembles.
  • Knowledge of non-interacting particle systems and energy levels.
  • Basic proficiency in mathematical notation used in quantum mechanics.
NEXT STEPS
  • Study the derivation of the canonical partition function in detail.
  • Explore the implications of the grand canonical ensemble in thermodynamics.
  • Learn about the applications of Fermi-Dirac and Bose-Einstein statistics in quantum mechanics.
  • Investigate the mathematical properties of the delta function in statistical mechanics.
USEFUL FOR

This discussion is beneficial for physicists, particularly those specializing in statistical mechanics, quantum mechanics, and thermodynamics, as well as students seeking to deepen their understanding of particle distributions in quantum systems.

Lebnm
Messages
29
Reaction score
1
I am studyng the deduction of Fermi-Dirac and Bose-Einstein distribution, but I'm not understanding one part. If we have a system of ##N## identical non-interaction particles, with energies levels ##\varepsilon _{l}## and occupation number ##n_{l}## (this is the number of particles with the same energy ##\varepsilon_{l}##), the total energy and the partion function in the canonical emsemble are $$E(\{n_{l}\}) = \sum_{l} \varepsilon _{l} n_{l}, \ \ \ Z_{N} = \sum _{\{n_{l}\}} e^{-\beta E(\{n_{l}\})} = \sum _{\{n_{l}\}}\prod _{l}e^{-\beta n_{l}\varepsilon_{l}},$$where ##\{n_{l}\}## means tha the sum is over all possible sets of values of number occupations, such that ##\sum_{l} n_{l} = N##. Now, the partion function in the grand canonical emsemble is $$Q = \sum _{N} e^{\beta \mu N} Z_{N}.$$ The book I am reading say that this is equal to $$Q = \prod _{l} \sum _{n_{l}}[e^{-\beta(\varepsilon - \mu)}]^{n_{l}}$$ but I don't understand why. Note that the sum passed from a sum over the set ##\{n_{l}\}## to a sum over the values of ##n_{l}##.
 
Physics news on Phys.org
Okay, let me see if I can go through it in more detail.

Let's let a "state" ##s## be an assignment of occupation numbers to each energy level ##l##. So ##n_{sl}## is the occupation number of energy level ##l## in state ##s##. Then in terms of ##s## we can write:

##Z_N = \sum_s e^{-\beta \sum_l n_{sl} \epsilon_l} \delta_{N - \sum_l n_{sl}}##
## = \sum_s (\Pi_l e^{-\beta n_{sl} \epsilon_l}) \delta_{N - \sum_l n_{sl}}##

where the ##\delta_{N - \sum_l n_{sl}}## returns 0 unless ##\sum_l n_{sl} = N##

So instead of only summing over states with ##N## particles, I'm summing over all possible states, but the ones with a number of particles different from ##N## make no contribution, because of the ##\delta##.

Now, let's form the grand canonical partition function:

##Q = \sum_N e^{\beta \mu N} Z_N##
## = \sum_N e^{\beta \mu N} \sum_s (\Pi_l e^{-\beta n_{sl} \epsilon_l}) \delta_{N - \sum_l n_{sl}}##
## = \sum_N \sum_s e^{\beta \mu N} (\Pi_l e^{-\beta n_{sl} \epsilon_l}) \delta_{N - \sum_l n_{sl}}##

Now, assuming that we can switch the order of summation (which we can, unless there are convergence issues, which I'm assuming there aren't), we can write:

##Q = \sum_s \sum_N e^{\beta \mu N} (\Pi_l e^{-\beta n_{sl} \epsilon_l}) \delta_{N - \sum_l n_{sl}}##

We can do the inner sum over ##N##, and because of the presence of the ##\delta##, the only contributions are when ##N = \sum_l n_{sl}##. So we can get rid of ##N## to get:

##Q = \sum_s e^{\beta \mu \sum_l n_{sl}} (\Pi_l e^{-\beta n_{sl} \epsilon_l})##
##Q = \sum_s \Pi_l e^{-\beta (\epsilon_l - \mu) n_{sl}}##

The final simplification is to bring the summation inside the product. Since summing over all possible states ##s## is equivalent to summing over all possible assignments to ##n_1, n_2, ...##, we can rewrite this as:

##Q = \sum_{n_1} \sum_{n_2} ... e^{-\beta (\epsilon_l - \mu) n_{1}} e^{-\beta (\epsilon_l - \mu) n_{2}} ... ##
##= \sum_{n_1} e^{-\beta (\epsilon_l - \mu) n_{1}} \sum_{n_2} e^{-\beta (\epsilon_l - \mu) n_2} ...##
##= (\sum_{n_1} e^{-\beta (\epsilon_l - \mu) n_{1}}) (\sum_{n_2} e^{-\beta (\epsilon_l - \mu) n_2}) ...##
##= \Pi_l (\sum_n e^{-\beta (\epsilon_l - \mu) n})##
 
  • Like
Likes   Reactions: Lebnm
The mathematical fact that can be used is this:

##\sum_{n_1} \sum_{n_2} ... \sum_{n_M} f(1, n_1) f(2, n_2) ... f(M, n_M) = \Pi_l \sum_n f(l, n)##
 
thank you!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K