I The different generators of canonical transformations

AI Thread Summary
The discussion focuses on 1-parameter canonical transformations in the phase space of a one degree of freedom mechanical system, emphasizing the relationship between two generators of transformation: F and W. It highlights that F is defined through a specific function relating phase space coordinates and their derivatives, while W can be derived using Poisson brackets. A participant expresses difficulty finding references on this topic in standard mechanics texts and requests online resources. Another contributor mentions their understanding comes from Goldstein's mechanics textbook and references an old paper that generalizes the relationship between Hamilton's principal functions and the Hamiltonian. The conversation underscores the complexity of canonical transformations and the need for accessible resources.
andresB
Messages
625
Reaction score
374
Consider the phase space of a one degree of freedom mechanical system. We can pass from one phase space coordinates to another phase space coordinates via a canonical transformation. I want to focus on 1-parameter canonical transformations,
$$(q_{0},p_{0})\rightarrow(q_{\lambda},p_{\lambda})$$
where ##\lambda\in[0,\infty)## parametrize the transformation.

By the standard theory, there exist a function ##F=F_{1}(q_{0},q_{\lambda};\lambda)## such that
$$p_{0}\frac{dq_{0}}{dt}-H=p_{\lambda}\frac{dq_{\lambda}}{dt}-K+\frac{dF_{1}}{dt}.$$
##F## is called the generator of the transformation, and the following equation follows
$$p_{0} =\frac{\partial F_{1}}{\partial q_{0}},\qquad p_{\lambda}=-\frac{\partial F_{1}}{\partial q_{\lambda}}.$$

Now, also by standard theory, there exist a function ##W=W(q,p;\lambda)## such that the transformation can be obtained via the Poisson brackets using the equations
$$\frac{dq}{d\lambda} =\left\{ q,W\right\}, $$
$$\frac{dp}{d\lambda} =\left\{ p,W\right\}.$$
##W## is again sometimes called the generator of the transformation.

What is the relation between ##F## and ##W ##??
 
Physics news on Phys.org
andresB said:
Now, also by standard theory, there exist a function W=W(q,p;λ) such that the transformation can be obtained via the Poisson brackets using the equations
As a layman I do not find this transformation via the Poisson brackets in my text of mechanics. Could you show me some web reference if you know any ?
 
anuttarasammyak said:
As a layman I do not find this transformation via the Poisson brackets in my text of mechanics. Could you show me some web reference if you know any ?
I don't know any good online references. My knowledge of the topics comes from Goldstein 2nd edition, section 9.5.
 
  • Like
Likes anuttarasammyak
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top