The Direction and magnitude of current in the inductor

  • Thread starter hidemi
  • Start date
  • #1
208
36
Homework Statement:
The diagram (see attachment) shows an inductor that is part of a circuit. The direction of the emf induced in the inductor is indicated. Which of the following is possible?

A. The current is constant and rightward
B. The current is constant and leftward
C. The current is increasing and rightward
D. The current is increasing and leftward
E. None of the above

The answer is D.
Relevant Equations:
ε = -L* dI/dt
I understand that the current is going rightward because of the negative sign in the equation above, but why is the current increasing not decreasing?
The current doesn't stay constant because it changes with the time based upon the equation above again.
 

Attachments

  • 11.png
    11.png
    6 KB · Views: 21

Answers and Replies

  • #2
tech99
Gold Member
2,197
841
Homework Statement:: The diagram (see attachment) shows an inductor that is part of a circuit. The direction of the emf induced in the inductor is indicated. Which of the following is possible?

A. The current is constant and rightward
B. The current is constant and leftward
C. The current is increasing and rightward
D. The current is increasing and leftward
E. None of the above

The answer is D.
Relevant Equations:: ε = -L* dI/dt

I understand that the current is going rightward because of the negative sign in the equation above, but why is the current increasing not decreasing?
The current doesn't stay constant because it changes with the time based upon the equation above again.
A good way to understand inductors is to impress a known current (for instance, using a high series resistance) and see what voltage obtains. In the example shown, the voltage acts to the right. You only have options for "current increasing", making dI/dt is positive. As L is also positive, e opposes the current direction by flowing to the left.
 
  • #3
208
36
A good way to understand inductors is to impress a known current (for instance, using a high series resistance) and see what voltage obtains. In the example shown, the voltage acts to the right. You only have options for "current increasing", making dI/dt is positive. As L is also positive, e opposes the current direction by flowing to the left.
Thank you so much.
 

Related Threads on The Direction and magnitude of current in the inductor

Replies
4
Views
9K
Replies
3
Views
7K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
3
Views
433
Replies
1
Views
28K
Replies
11
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
Top