The effect of slightly slanted distance (arm) on torque output

  • Thread starter Thread starter karabiner98k
  • Start date Start date
  • Tags Tags
    Arm Output Torque
AI Thread Summary
The discussion focuses on the impact of a slight angle between a torque wrench and its extension on torque output. It highlights that while the angle between the force and the lever arm is critical, the angle created by the extension's alignment can also affect calculations. The effective lever arm can be determined using cosine adjustments for small angles, with a specific example showing that a 3-degree angle has minimal effect on torque output. The calculations confirm that the actual lever arm remains close to the expected length, leading to a torque output of approximately 158 N-m when applying 18 kg of force. Ultimately, measuring the distance from the extension's square drive to the wrench drive center may be a simpler approach.
karabiner98k
Messages
90
Reaction score
12
Hi everyone.
In most cases when torque and lever arm are being discussed, it is the angle between the force and the arm that matters (like in the following picture).

maxresdefault.jpg
However, non of the articles that I have read so far have mentioned anything about the distance between force and fastener being straight or not.
I have made an extension for my torque wrench (effective length = 0.4 meter) but due to ratchet gears of the wrench, I can't attach it to the extension in a way that both form a straight line. There is a small angle between the extension and the wrench as can be seen in the following picture specified with a blue arrow:

20220319_210633.jpg

20220319_210855.jpg
If the angle is between the force and the lever, we use sin(θ) to calculate torque but what about this angle? How does it affect the final torque output? What if the distance from the fastener is not straight? How do you calculate torque in this special case (Assuming (θ) = 3 degrees) ?

Force = 18 kg (176.5 N)
(θ) = 3 degrees
Total length = 0.895 meter
 
Last edited:
Engineering news on Phys.org
The actual lever arm is the distance between the fastener and the force, being that distance always perfectly perpendicular to the line of application of the force.

In this particular case, the point and direction of application of the hand force is not too precise.
Also consider that the fastener will be "feeling" a greater torque than the set torque value of the wrench.
Please, see:
https://firetrucksandequipment.tpub.com/TM-9-254/css/TM-9-254_92.htm

https://www.engineersedge.com/manufacturing_spec/torque_wrench_1.htm

Torque wrench.jpg


TM-9-254_92_1.jpg


torque5.gif
 
Last edited:
  • Like
Likes karabiner98k and hutchphd
Also consider that the fastener will be "feeling" a greater torque than the set torque value of the wrench.
Thanks for your answer. Yes, I'm completely aware of the increased torque due to increased length and this has also been mentioned in the wrench manual with the following formula:

IMG-20220320-WA0000.jpg


In fact, I made the extension to both increase the range of my wrench and to operate it with less force. For instance, to apply 210 nm with the wrench (without extension), I have to apply 53 kg to its handle which is more than my body weight! With the extension attached, I can apply the same torque by setting the wrench at 94 nm which requires 24 kg to its handle.

Is that yellow line you drew is my actual lever arm? Should I ignore the sine and cosine of that small (blue) angle in my calculations?
According to my measurements, the yellow line you drew is about 0.895 meter.

Therefore, if I apply 18 kg to wrench handle with the extension, will I get 158 nm?
 
Last edited:
karabiner98k said:
Thanks for your answer.
...
Is that yellow line you drew is my actual level arm? Should I ignore the sine and cosine of that small (blue) angle in my calculations?
According to my measurements, the yellow line you drew is about 0.895 meter.

Therefore, if I apply 18 kg to wrench handle with the extension, will I get 158 nm?
You are welcome. :smile:
Yes, that yellow line represents your actual lever arm.
If you move that line down to align it with the torque wrench, you will see that the 0.4 m of the wrench remain the same, and that the actual 0.495 m length of the extension becomes 0.495 x cos (angle) for your purpose.

If the angle is estimated to be 3 degrees, then your effective or actual lever arm is 0.4 + (0.495 x cos (3)) = 0.4 + 0.494 = 0.894 m.
Torque on fastener for 18 kgf hand-applied = 18 x 9.81 x 0.894 = 157.91 N-m
 
  • Like
Likes karabiner98k
If the angle is estimated to be 3 degrees, then your effective or actual lever arm is 0.4 + (0.495 x cos (3)) = 0.4 + 0.494 = 0.894 m.
Thanks a million! This is exactly what I wanted to know! So, that angle doesn't make a huge difference in the final torque output. I think the other and simpler alternative would be to just measuring the length from extension square drive to wrench drive (center to center) instead of measuring the angle precisely.
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top