The Entropy Change of Melting Ice: Why is the Equation Written as ΔS = Q/T?

Click For Summary
The discussion focuses on the entropy change equation, specifically why it is expressed as ΔS = Q/T instead of ΔS = ΔQ/T. The participants clarify that Q represents the heat transferred during a process, while ΔQ could imply a change in heat, which is misleading since heat is not a state variable. They emphasize that heat is inherently a transfer variable, describing energy transitions rather than states. The analogy between heat and work is also mentioned, reinforcing that both are process-related. Understanding these distinctions is crucial for accurately interpreting thermodynamic equations.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1680049891627.png


Why dose they write the change in entropy equation as ##\Delta S = \frac{Q}{T}##? Would it not better to write it as ##\Delta S = \frac{\Delta Q}{T}##, since it clear that we are only concerned about the transfer of heat in our system while it remains at constant temperature as all the energy goes into the change in phase.

Many thanks!
 
Physics news on Phys.org
Callumnc1 said:
Homework Statement:: Please see below
Relevant Equations:: Please see below

For this,
View attachment 324174

Why dose they write the change in entropy equation as ##\Delta S = \frac{Q}{T}##? Would it not better to write it as ##\Delta S = \frac{\Delta Q}{T}##, since it clear that we are only concerned about the transfer of heat in our system while it remains at constant temperature as all the energy goes into the change in phase.

Many thanks!
You are thinking correctly. However, ##Q## is often used for the heat transferred in a process. The symbol ##\Delta Q## for the heat transferred is also sometimes used. But, this symbol can be misleading if ##\Delta Q## is interpreted as "the change in ##Q##", or as ##\Delta Q = Q_f - Q_i##. The symbols ##Q_f## and ##Q_i## do not have any meaning. The initial and final states of the system do not "have heat". In more formal words, "heat is not a state variable".
 
  • Like
Likes member 731016
TSny said:
You are thinking correctly. However, ##Q## is often used for the heat transferred in a process. The symbol ##\Delta Q## for the heat transferred is also sometimes used. But, this symbol can be misleading if ##\Delta Q## is interpreted as "the change in ##Q##", or as ##\Delta Q = Q_f - Q_i##. The symbols ##Q_f## and ##Q_i## do not have any meaning. The initial and final states of the system do not "have heat". In more formal words, "heat is not a state variable".
Thank you for your reply @TSny! Oh I think I see what you mean. Since heat is a 'transfer variable', it inherently describing a transition between the of energy between the finial and previous state.
 
Callumnc1 said:
Thank you for your reply @TSny! Oh I think I see what you mean. Since heat is a 'transfer variable', it inherently describing a transition between the of energy between the finial and previous state.
Yes. ##Q## is always associated with a process, and it refers to the energy transferred due to a temperature difference during the process. Likewise, work ##W## is always associated with a process. You might sometimes see ##\Delta W## for the work, but we would never think of this as ##\Delta W = W_f - W_i##.
 
  • Like
Likes member 731016
TSny said:
Yes. ##Q## is always associated with a process, and it refers to the energy transferred due to a temperature difference during the process. Likewise, work ##W## is always associated with a process. You might sometimes see ##\Delta W## for the work, but we would never think of this as ##\Delta W = W_f - W_i##.
Ahh thank you very much @TSny! That is a very good analogy!
 
Last edited by a moderator:
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...