MHB The equation has exactly m different solutions

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $n=p^rm$, where $p$ is a prime, $m \in \mathbb{N}, r \geq 0$ an integer and $(p,m)=1$.
I have to show that the equation $x^n=1$ has exactly $m$ different roots in the algebraic closure $\overline{\mathbb{Z}}_p$ of $\mathbb{Z}_p$.

I have done the following:

In $\mathbb{Z}_p$ it stands that $x^p=x$.

So, we have that
$$x^{p^r}=(x^{p})^{p^r-1}=x^{p^r-1}=(x^p)^{p^r-2}=x^{p^r-2}= \dots =x^p=x$$

That means that $x^n=1 \Rightarrow x^{p^rm}=1 \Rightarrow (x^{p^r})^m=1 \Rightarrow x^m=1$

Is this correct?? Do we conclude from that, that the equation $x^n=1$ has exactly $m$ different roots in the algebraic closure $\overline{\mathbb{Z}}_p$ of $\mathbb{Z}_p$ ?? (Wondering)
 
Physics news on Phys.org
You're on the right track, but all you've shown is for $x\in \mathbb{Z}_p$, $x^m=1$.
So let S be the collection of all $p^rm$ roots of unity in the algebraic closure. Clearly S is finite (it contains at most $p^rm$ elements). Then let $F$ be the field obtained by adjoining S to $\mathbb{Z}_p$. $F$ is then a finite extension of the base field and so is finite with a power of $p$ elements, say $p^s$. Assume $x\in F$ satisfies $x^{p^rm}=1$. Let $t$ be the multiplicative order of $x$. Then $t$ divides the order of the multiplicative group of $F$, namely $p^s-1$. So $t$ divides the gcd of $(p^rm,p^s-1)$, a divisor of m since $p$ is prime $p^s-1$. Thus $x^m=1$. Conversely, it is clear that $x^m=1$ implies $x^{p^rm}=1$. Since $m$ is prime to $p$, the derivative of $x^m-1$ is not 0 and so has no multiple roots. Since we started in the algebraic closure, there are exactly $m$ roots of this equation.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top