- 49,346
- 25,384
meopemuk said:I'll stick to my old-fashioned idea that a random sequence of measured outcomes is just that -- "a random sequence of measured outcomes".
One potential issue with the MWI is how, exactly, it predicts that we should all observe a random sequence of measured outcomes if we run a large number of trials of quantum experiments. Or more precisely, how it predicts that each individual branch of the wave function will describe an observer who observes a random sequence of measured outcomes.
If we take the MWI at face value, then, for example, if someone runs 100 trials of a Stern-Gerlach measurement on electrons from a source whose wave function is set up to give a 50-50 chance of each outcome, then there is a branch of the wave function in which the person observes a "spin up" result 100 times in a row. And similarly for spin down. In fact, there will be ##2^{100}## branches, each corresponding to one of the ##2^{100}## possible sequences of measurement results. But we don't ever seem to meet any observers who have observed such things--or, again putting things into MWI language, there don't seem to be any branches of the wave function that we have evidence for, that contain any such observers. (Another way of stating this question is, how does MWI give us the Born rule?)