I The Hamiltonian elements in Anderson dimer

  • I
  • Thread starter Thread starter hokhani
  • Start date Start date
  • Tags Tags
    Hamiltonian
hokhani
Messages
552
Reaction score
15
TL;DR Summary
I don't know the occur of - sign in some elements of the Hamiltonian
In a system with two orbitals ##c## and ##d## (each with two spin degrees of freedom), consider the Hamiltonian ##H=V(d^{\dagger}_{\uparrow} c_{\uparrow} + c^{\dagger}_{\uparrow}d_{\uparrow}+d^{\dagger}_{\downarrow} c_{\downarrow} + c^{\dagger}_{\downarrow}d_{\downarrow})##. Also suppose that the many body states are indexed as ##|n_{d_{\uparrow}}, n_{d_{\downarrow}}, n_{c_{\uparrow}} , n_{c_{\downarrow}}\rangle## where ##n## shows the occupation number of each spin-orbital.
As mentioned in the literature, ##\langle1001|H|1100\rangle=V## and ##\langle0110|H|1100\rangle=-V##. However, according to my calculations, ##H|1100\rangle=V(|0110\rangle+|1001\rangle)## which gives ##V## for the two matrix elements ##\langle1001|H|1100\rangle## and ##\langle 0110|H|1100\rangle##. I would like to know where my calculations goes wrong! Any help is appreciated.
 
Last edited:
Physics news on Phys.org
Can you provide a citation to an example of the literature you refer to?
 
Haborix said:
Can you provide a citation to an example of the literature you refer to?
Of course. In the following virtual lecture on youtube at the minute 52 (the blue text):

The Hamiltonian is written in the subspace ##Q=2, S_z=0## and I am only interested in the difference between the arrays ##H_{1,3}## and ##H_{2,3}## so I neglected the other terms of the Hamiltonian in my main post.
 
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
 
Last edited:
Haborix said:
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
Thank you so much for your attention. Could you please explain how did you obtain ##c^{\dagger}_{\uparrow} d_{\uparrow} |1100 \rangle =- |0110 \rangle##? In other words, my question is about the appearance of the minus sign.
EDIT: Your answer is quite to the point and I am lookig for the reason for the minus sign.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
12
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
0
Views
1K
Replies
12
Views
2K
Replies
1
Views
1K
Replies
6
Views
2K
Back
Top