I The Hamiltonian elements in Anderson dimer

  • I
  • Thread starter Thread starter hokhani
  • Start date Start date
  • Tags Tags
    Hamiltonian
Click For Summary
The discussion centers on the Hamiltonian for a system with two orbitals, focusing on the calculations of matrix elements involving many-body states. The user initially presents their calculations, which yield different results for the matrix elements compared to established literature. Clarifications reveal that the user may have mixed up the order of basis vectors, affecting their results. The conversation also touches on how to represent the Hamiltonian matrix and the significance of the minus sign in certain transitions. Understanding these aspects is crucial for accurate calculations in quantum mechanics.
hokhani
Messages
561
Reaction score
18
TL;DR
I don't know the occur of - sign in some elements of the Hamiltonian
In a system with two orbitals ##c## and ##d## (each with two spin degrees of freedom), consider the Hamiltonian ##H=V(d^{\dagger}_{\uparrow} c_{\uparrow} + c^{\dagger}_{\uparrow}d_{\uparrow}+d^{\dagger}_{\downarrow} c_{\downarrow} + c^{\dagger}_{\downarrow}d_{\downarrow})##. Also suppose that the many body states are indexed as ##|n_{d_{\uparrow}}, n_{d_{\downarrow}}, n_{c_{\uparrow}} , n_{c_{\downarrow}}\rangle## where ##n## shows the occupation number of each spin-orbital.
As mentioned in the literature, ##\langle1001|H|1100\rangle=V## and ##\langle0110|H|1100\rangle=-V##. However, according to my calculations, ##H|1100\rangle=V(|0110\rangle+|1001\rangle)## which gives ##V## for the two matrix elements ##\langle1001|H|1100\rangle## and ##\langle 0110|H|1100\rangle##. I would like to know where my calculations goes wrong! Any help is appreciated.
 
Last edited:
Physics news on Phys.org
Can you provide a citation to an example of the literature you refer to?
 
Haborix said:
Can you provide a citation to an example of the literature you refer to?
Of course. In the following virtual lecture on youtube at the minute 52 (the blue text):

The Hamiltonian is written in the subspace ##Q=2, S_z=0## and I am only interested in the difference between the arrays ##H_{1,3}## and ##H_{2,3}## so I neglected the other terms of the Hamiltonian in my main post.
 
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
 
Last edited:
Haborix said:
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
Thank you so much for your attention. Could you please explain how did you obtain ##c^{\dagger}_{\uparrow} d_{\uparrow} |1100 \rangle =- |0110 \rangle##? In other words, my question is about the appearance of the minus sign.
EDIT: Your answer is quite to the point and I am lookig for the reason for the minus sign.
 
Last edited:
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...

Similar threads

Replies
12
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
0
Views
1K
Replies
12
Views
2K
Replies
1
Views
1K
Replies
6
Views
2K