The Hamiltonian elements in Anderson dimer

  • Context: Undergrad 
  • Thread starter Thread starter hokhani
  • Start date Start date
  • Tags Tags
    Hamiltonian
Click For Summary
SUMMARY

The discussion centers on the Hamiltonian for a two-orbital system represented as ##H=V(d^{\dagger}_{\uparrow} c_{\uparrow} + c^{\dagger}_{\uparrow}d_{\uparrow}+d^{\dagger}_{\downarrow} c_{\downarrow} + c^{\dagger}_{\downarrow}d_{\downarrow})##. Participants analyze the matrix elements ##\langle1001|H|1100\rangle=V## and ##\langle0110|H|1100\rangle=-V##, with one user questioning the appearance of a minus sign in their calculations. The conversation references a virtual lecture for clarification on the Hamiltonian's matrix representation and the order of basis vectors, emphasizing the importance of accurate indexing in many-body states.

PREREQUISITES
  • Understanding of quantum mechanics, specifically many-body systems.
  • Familiarity with Hamiltonian operators and their matrix representations.
  • Knowledge of spin-orbital notation and occupation numbers.
  • Experience with linear algebra concepts relevant to quantum states.
NEXT STEPS
  • Study the derivation of Hamiltonians in many-body quantum systems.
  • Learn about the significance of basis vector ordering in quantum mechanics.
  • Investigate the role of spin in quantum state transformations.
  • Review literature on matrix representations of Hamiltonians, particularly in condensed matter physics.
USEFUL FOR

Quantum physicists, researchers in condensed matter physics, and students studying many-body quantum systems will benefit from this discussion.

hokhani
Messages
581
Reaction score
20
TL;DR
I don't know the occur of - sign in some elements of the Hamiltonian
In a system with two orbitals ##c## and ##d## (each with two spin degrees of freedom), consider the Hamiltonian ##H=V(d^{\dagger}_{\uparrow} c_{\uparrow} + c^{\dagger}_{\uparrow}d_{\uparrow}+d^{\dagger}_{\downarrow} c_{\downarrow} + c^{\dagger}_{\downarrow}d_{\downarrow})##. Also suppose that the many body states are indexed as ##|n_{d_{\uparrow}}, n_{d_{\downarrow}}, n_{c_{\uparrow}} , n_{c_{\downarrow}}\rangle## where ##n## shows the occupation number of each spin-orbital.
As mentioned in the literature, ##\langle1001|H|1100\rangle=V## and ##\langle0110|H|1100\rangle=-V##. However, according to my calculations, ##H|1100\rangle=V(|0110\rangle+|1001\rangle)## which gives ##V## for the two matrix elements ##\langle1001|H|1100\rangle## and ##\langle 0110|H|1100\rangle##. I would like to know where my calculations goes wrong! Any help is appreciated.
 
Last edited:
Physics news on Phys.org
Can you provide a citation to an example of the literature you refer to?
 
Haborix said:
Can you provide a citation to an example of the literature you refer to?
Of course. In the following virtual lecture on youtube at the minute 52 (the blue text):

The Hamiltonian is written in the subspace ##Q=2, S_z=0## and I am only interested in the difference between the arrays ##H_{1,3}## and ##H_{2,3}## so I neglected the other terms of the Hamiltonian in my main post.
 
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
 
Last edited:
Haborix said:
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
Thank you so much for your attention. Could you please explain how did you obtain ##c^{\dagger}_{\uparrow} d_{\uparrow} |1100 \rangle =- |0110 \rangle##? In other words, my question is about the appearance of the minus sign.
EDIT: Your answer is quite to the point and I am lookig for the reason for the minus sign.
 
Last edited:

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K