The Hamiltonian elements in Anderson dimer

  • Context: Undergrad 
  • Thread starter Thread starter hokhani
  • Start date Start date
  • Tags Tags
    Hamiltonian
Click For Summary

Discussion Overview

The discussion centers on the Hamiltonian elements in a system with two orbitals, specifically examining the matrix elements of the Hamiltonian operator in the context of many-body quantum states. Participants explore the implications of their calculations and seek clarification on specific aspects of the Hamiltonian's action on basis states.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a Hamiltonian and questions the correctness of their calculated matrix elements, suggesting a discrepancy with established literature.
  • Another participant requests a citation to the literature referenced, indicating a need for verification of the claims made.
  • A later reply provides a source, mentioning a virtual lecture that discusses the Hamiltonian in a specific subspace and notes the neglect of other terms.
  • One participant suggests that the original poster may have mixed up the order of the basis vectors, providing their own expression for the Hamiltonian's action on the state |1100⟩.
  • Another participant echoes this sentiment and asks for clarification on the appearance of a minus sign in the calculations related to the Hamiltonian's action.

Areas of Agreement / Disagreement

Participants express differing views on the calculations of the Hamiltonian's matrix elements, with no consensus reached on the correctness of the original calculations or the interpretation of the minus sign.

Contextual Notes

There are unresolved questions regarding the order of basis vectors and the specific action of the Hamiltonian on the states, which may depend on the definitions and conventions used in the calculations.

hokhani
Messages
586
Reaction score
22
TL;DR
I don't know the occur of - sign in some elements of the Hamiltonian
In a system with two orbitals ##c## and ##d## (each with two spin degrees of freedom), consider the Hamiltonian ##H=V(d^{\dagger}_{\uparrow} c_{\uparrow} + c^{\dagger}_{\uparrow}d_{\uparrow}+d^{\dagger}_{\downarrow} c_{\downarrow} + c^{\dagger}_{\downarrow}d_{\downarrow})##. Also suppose that the many body states are indexed as ##|n_{d_{\uparrow}}, n_{d_{\downarrow}}, n_{c_{\uparrow}} , n_{c_{\downarrow}}\rangle## where ##n## shows the occupation number of each spin-orbital.
As mentioned in the literature, ##\langle1001|H|1100\rangle=V## and ##\langle0110|H|1100\rangle=-V##. However, according to my calculations, ##H|1100\rangle=V(|0110\rangle+|1001\rangle)## which gives ##V## for the two matrix elements ##\langle1001|H|1100\rangle## and ##\langle 0110|H|1100\rangle##. I would like to know where my calculations goes wrong! Any help is appreciated.
 
Last edited:
Physics news on Phys.org
Can you provide a citation to an example of the literature you refer to?
 
Haborix said:
Can you provide a citation to an example of the literature you refer to?
Of course. In the following virtual lecture on youtube at the minute 52 (the blue text):

The Hamiltonian is written in the subspace ##Q=2, S_z=0## and I am only interested in the difference between the arrays ##H_{1,3}## and ##H_{2,3}## so I neglected the other terms of the Hamiltonian in my main post.
 
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
 
Last edited:
Haborix said:
I think you've probably just gotten the order of the basis vectors mixed up. I get ##H|1100\rangle=V(-|0110\rangle+|1001\rangle)+(2\epsilon+U)|1100\rangle##. In the notation of the video I can represent ##|1100\rangle## as $$\begin{pmatrix}0 \\ 0 \\ 1 \\ 0\end{pmatrix}.$$

EDIT: I think I may have misunderstood your question. Are you essentially asking how to get the matrix representation of the Hamiltonian?
Thank you so much for your attention. Could you please explain how did you obtain ##c^{\dagger}_{\uparrow} d_{\uparrow} |1100 \rangle =- |0110 \rangle##? In other words, my question is about the appearance of the minus sign.
EDIT: Your answer is quite to the point and I am lookig for the reason for the minus sign.
 
Last edited:

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K