MHB The irreducible polynomial is not separable

Click For Summary
The discussion revolves around the properties of polynomials in the context of a field F and its polynomial ring D. It confirms that the element t in D is a prime element, as shown by a contradiction arising from assuming t is not prime. The irreducibility of the polynomial x^n - t in K[x] is established using Eisenstein's criterion, where t divides the constant term but not the leading coefficient. Additionally, it is demonstrated that the polynomial x^p - t is not separable in characteristic p, as it has only one root in the algebraic closure C, with that root having multiplicity p. This highlights the unique behavior of polynomials in fields with positive characteristic.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $F$ be a field, $D=F[t]$, the polynomial ring of $t$, with coefficients from $F$ and $K=F(t)$ the field of rational functions of $t$.
(a) Show that $t\in D$ is a prime element of $D$.
(b) Show that the polynomial $x^n-t\in K[x]$ is irreducible.
(c) Let $\text{char} F=p$. Show that the polynomial $x^p-t$, even if it is irreducible in $K[t]$, it is not separable, and if $C$ is an algebraic closure of $K$, this polynomial has only one root in $C$. I have done the following:

(a) We assume that $t\in D$ is not prime. Then there are non-constant polynomials $f(t),g(t)\in D$ such that $t=f(t)g(t)$. Then $\deg (t)=\deg (f(t)\cdot g(t)$. Since $D$ is an integral domain, we have that $\deg (t)=\deg (f)+\deg (g)\Rightarrow 1\geq 1+1$, a contradiction.
Is this correct? (Wondering)

(b) From the generalized criterion of Eistenstein we have that the prime $t$ divides the term $t$ but not the coefficient of the highest degree term, so it $x^n-t$ is irreducible in $K[x]$.
Is this correct? (Wondering)

(c) Could you give me a hint how we could show that? Why does this hold? (Wondering)
 
Physics news on Phys.org
(c) Let $\text{char} F=p$. Show that the polynomial $x^p-t$, even if it is irreducible in $K[t]$, it is not separable, and if $C$ is an algebraic closure of $K$, this polynomial has only one root in $C$.

Let $c$ be the root of $x^p-t$ in $C$, i.e., $t=c^p$. We have that $x^p-t=x^p-c^p=(x-c)^p$, since $\text{char} F=p$.
Therefore, we have that $c$ is the only root in $C$ of multiplicity $p$, and so $x^p-t$ is not separable.

Is this correct? (Wondering)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

Replies
48
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K