The Laplace of unfamiliar function

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Function Laplace
Click For Summary
SUMMARY

The integral $$\int_{0}^{\infty} \, e^{-at} \sin(bt) \frac{\ln t}{t}\, dt$$ has been analyzed and solved using Laplace identities. The final result is expressed as $$-\left( \frac{ \log(a^2+b^2) }{2} +\gamma \right) \arctan \left( \frac{b}{a} \right)$$, where $\gamma$ is the Euler-Mascheroni constant. The discussion involved deriving the integral through the use of series expansions and harmonic sums, culminating in a comprehensive evaluation of the integral's behavior.

PREREQUISITES
  • Understanding of Laplace transforms and identities
  • Familiarity with integral calculus and improper integrals
  • Knowledge of harmonic numbers and their properties
  • Experience with mathematical software such as Mathematica for verification
NEXT STEPS
  • Study Laplace transforms in-depth, focusing on their applications in solving integrals
  • Learn about harmonic numbers and their significance in series and integrals
  • Explore the properties of the Euler-Mascheroni constant and its applications
  • Practice using Mathematica to solve complex integrals and verify results
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers working on integral evaluations and Laplace transform applications will benefit from this discussion.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
I found the following integral $$\int_{0}^{\infty} \, e^{-at} \sin(bt) \frac{\ln t}{t}\, dt $$

This thread will be dedicated to solve the integral , any ideas will always be welcomed (Cool).

Serious steps will be made in the next threads . It seems to involve Laplace identities the value returned by Mathematica is insane (Sweating).
 
Last edited:
Physics news on Phys.org
$$\int_{0}^{\infty} \, e^{-at} \sin(bt) \frac{\ln t}{t}\, dt $$

We can start by the following integral

$$

\begin{align*}

I(s) = \int_{0}^{\infty} t^{s-1} \, e^{-at} \, \sin(bt) dt

&= \int_{0}^{\infty}t^{s-1} \, e^{-at}\sum_{n\geq 0} \frac{(-1)^n (bt)^{2n+1}}{\Gamma(2n+2)} \\

&= \sum_{n\geq 0} \frac{(-1)^n (b)^{2n+1}}{\Gamma(2n+2)} \int_{0}^{\infty}t^{s+2n} \, e^{-at} dt \\

&= \frac{1}{a^s} \sum_{n\geq 0} \frac{(-1)^n (b)^{2n+1} \Gamma (s+2n+1)}{\Gamma(2n+2) a^{2n+1}}

\end {align*} $$$$

\begin{align*}

I'(0) = \int_{0}^{\infty} \, e^{-at} \sin(bt) \frac{\ln t}{t}\, dt

&= \sum_{n\geq 0} \frac{(-1)^n \psi_0(2n+1)}{2n+1} \left( \frac{b}{a} \right)^{2n+1} -\log(a) \sum_{n\geq 0} \frac{(-1)^n }{2n+1} \left( \frac{b}{a} \right)^{2n+1}\\

&= \sum_{n\geq 0} \frac{(-1)^n H_{2n}-\gamma}{2n+1} \left( \frac{b}{a} \right)^{2n+1} -\log(a) \arctan \left( \frac{b}{a} \right) \\

&= \sum_{n\geq 0} \frac{(-1)^n H_{2n}}{2n+1} \left( \frac{b}{a} \right)^{2n+1}-(\gamma +\log(a))\arctan \left( \frac{b}{a} \right)

\end{align*}
$$

It remains to solve the following

$$\sum_{n\geq 0} \frac{(-1)^n H_{2n} }{2n+1} \, x^{2n+1}$$

I will try to evaluate the Harmonic sum in the next post ,,,
 
After lots of thinking here is a solution to the harmonic sum

$$
\begin{align*}

\sum_{k\geq 0}(-1)^k H_{2k} x^{2k}&= \sum_{k\geq 0}(-1)^k x^{2k} \int^1_0 \frac{1-t^{2k}}{1-t} \, dt\\

&= \int^1_0 \frac{1}{1-t} \sum_{k\geq 0}(-1)^k x^{2k} \left(1-t^{2k}\right) \, dt\\
&= \int^1_0 \frac{1}{1-t} \sum_{k\geq 0}(-1)^k \left(x^{2k}-(xt)^{2k}\right) \, dt\\
&= \int^1_0 \frac{1}{1-t}\left(\frac{1}{1+x^2}-\frac{1}{1+t^2x^2}\right) \, dt\\
&=\frac{1}{1+x^2} \int^1_0 \frac{1+t^2x^2-1-x^2}{(1-t)(1+t^2x^2)} \, dt\\
&=\frac{-x^2}{1+x^2} \int^1_0 \frac{(1-t^2)}{(1-t)(1+t^2x^2)} \, dt\\
&=\frac{-x^2}{1+x^2} \int^1_0 \frac{1+t}{(1+t^2x^2)} \, dt\\
&=\frac{-x^2}{1+x^2} \left( \int^1_0 \frac{1}{1+t^2x^2}+\frac{t}{1+t^2x^2} \, dt \right) \\
&= \frac{-1}{2(1+x^2)} \left(2x \arctan (x) + \log(1+x^2) \right) \\

\end{align*}
$$

Using this we conclude by integrating

$$\sum_{k\geq 0}\frac{(-1)^k H_{2k}}{2k+1} x^{2k}=-\frac{1}{2} \log(1+x^2) \arctan(x) $$

Hence the following

$$\sum_{k\geq 0}\frac{(-1)^k H_{2k}}{2k+1} \left(\frac{b}{a} \right)^{2k+1}=-\frac{1}{2} \log \left( \frac{a^2+b^2}{a^2} \right) \arctan \left(\frac{b}{a} \right) $$

$$
\begin{align*}

\int_{0}^{\infty} \, e^{-at} \sin(bt) \frac{\ln t}{t}\, dt &= -\left( \frac{1}{2} \log \left( \frac{a^2+b^2}{a^2} \right) + \gamma +\log(a) \right) \arctan \left( \frac{b}{a} \right)\\
&=- \left( \frac{ \log(a^2+b^2) }{2} +\gamma \right) \arctan \left( \frac{b}{a} \right)\\

\end{align*}
$$

Which is the result we are seeking for ... (Happy)
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 15 ·
Replies
15
Views
49K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K