yifli
- 68
- 0
I'm wondering why 1/k! is needed in Alt(T), which is defined as:
\frac{1}{k!}\sum_{\sigma \in S_k} \mbox{sgn}\sigma T(v_{\sigma(1)},\cdots,v_{\sigma(k)})
After removing 1/k!, the new \mbox{Alt}, \overline{\mbox{Alt}}, still satisfies \overline{\mbox{Alt}}(T)(v_1,\cdots,v_i,\cdots,v_j,\cdots,v_k)=-\overline{\mbox{Alt}}(T)(v_1,\cdots,v_j,\cdots,v_i,\cdots,v_k), which means \overline{\mbox{Alt}} is an alternating tensor
\frac{1}{k!}\sum_{\sigma \in S_k} \mbox{sgn}\sigma T(v_{\sigma(1)},\cdots,v_{\sigma(k)})
After removing 1/k!, the new \mbox{Alt}, \overline{\mbox{Alt}}, still satisfies \overline{\mbox{Alt}}(T)(v_1,\cdots,v_i,\cdots,v_j,\cdots,v_k)=-\overline{\mbox{Alt}}(T)(v_1,\cdots,v_j,\cdots,v_i,\cdots,v_k), which means \overline{\mbox{Alt}} is an alternating tensor