soroban
- 191
- 0
Consider the parametric equations: \:\begin{Bmatrix}x &=& \dfrac{t^2-1}{t^2+1} \\ y &=& \dfrac{2t}{t^2+1} \end{Bmatrix}
Then: \;x^2 + y^2 \:=\:\left(\frac{t^2-1}{t^2+1}\right)^2 + \left(\frac{2t}{t^2+1}\right)^2 \;=\;\frac{(t^2-1)^2 + (2t)^2}{(t^2+1)^2}
. . . . =\;\frac{t^4-2t^2+1 +4t^2}{(t^2+1)^2} \;=\;\frac{t^4+2t^2+1}{(t^2+1)^2} \;=\;\frac{(t^2+1)^2}{(t^2+1)^2} \;=\;1
We have: \;x^2+y^2\,=\,1, a unit circle centered at the origin.Find the y-intercepts.
Set x=0\!:\;\frac{t^2-1}{t^2+1} \,=\,0 \quad\Rightarrow\quad t\,=\,\pm1
. . Hence: \;y \:=\:\frac{2(\pm1)}{(\pm1)^2+1} \:=\:\pm1
The y-intercepts are: \;(0,1),\;(0,-1)Find the x-intercepts.
Set y = 0\!:\;\frac{2t}{t^2+1}\,=\,0 \quad\Rightarrow\quad t \,=\,0
. . Hence: \;x \:=\:\frac{0^2-1}{0^2+1} \:=\:-1
The x-intercept is: \;(-1,0)What happened to the other x-intercept?