The occupation probabilities of electrons in different states

AI Thread Summary
The occupation probability of electrons in different states is determined by the formula occup is proportional to [gi x exp(-Ei/kT)], where gi represents the number of states at energy Ei. A more comprehensive solution should include specific values for the number of states g_i for i = 1, 2, 3, along with a clear expression for the occupation probability that incorporates the proportionality constant. The term "temperature T6 = 1" refers to a normalized temperature scale, which needs to be converted to Kelvin for practical calculations. Understanding this relationship is crucial for obtaining accurate numerical results in thermodynamic contexts. The discussion emphasizes the importance of both the statistical mechanics framework and the correct temperature units in analyzing electron states.
Neo Tran
Messages
8
Reaction score
0
Homework Statement
An atom with a single electron is in a heat bath at a temperature of T6 = 1. The atom is high Z, so the electron is bound at this temperature, and only three states have appreciable occupations. The ground state has spin 5/2. The first excited state, at 210 eV, has spin 3/2. The second excited state, at 380 eV, has spin 3/2. What are the occupation probabilities for these three states?
Relevant Equations
occup is proportional to [gi x exp(-Ei/kT)]
where gi is the numver of states at energy Ei
occup is proportional to [gi x exp(-Ei/kT)]
where gi is the numver of states at energy Ei
 
Physics news on Phys.org
How about a better attempt at a solution in which you write down (a) the number of states ##g_i## for ##i =1,2,3## and (b) an expression for "occup" that includes the proportionality constant?

Also, please explain what "temperature T6 = 1" means in terms of degrees K which is what counts when you need to find numerical answers.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top