MHB The Probability of a Biased Coin: n Flips, m Heads

  • Thread starter Thread starter markosheehan
  • Start date Start date
  • Tags Tags
    Probability
AI Thread Summary
The discussion centers on calculating the probability of obtaining a specific sequence of heads and tails when flipping a biased coin. The probability of getting heads is denoted as p, while tails is 1-p. The probability of observing m heads in n flips is derived using the binomial probability formula: P(X) = {n choose m} * p^m * (1-p)^(n-m). There is clarification on whether the problem specifically asks for a sequence of m heads followed by n-m tails, which is not the case, as the formula accounts for any arrangement of heads and tails. Ultimately, the correct interpretation aligns with the binomial distribution, confirming the probability calculation.
markosheehan
Messages
133
Reaction score
0
the probability of getting a head on flipping a biased coin is p. the coin is flipped n times producing a sequence containing m heads and (n-m) tails what is the probability of obtaining this sequence from n flips.
i can't understand the wording
 
Mathematics news on Phys.org
I've moved this thread since our advanced forum is for calculus based stats.

A few things we need to observe:

The probability of getting heads is:

$$P(H)=p$$

Now, we know that it is certain that we will either get heads or tails, so we may state:

$$P(H)+P(T)=1\implies P(T)=1-P(H)=1-p$$

So, the probability of getting $m$ heads is:

$$P\left(H_m\right)=p^m$$

And the probability of getting $n-m$ tails is:

$$P\left(T_{n-m}\right)=(1-p)^{n-m}$$

Next we need to look at the number $N$ of ways to choose $m$ from $n$:

$$N={n \choose m}$$

Can you put all this together to find the requested probability?
 
when i put this all together i get (n ncr m)*p*(1-p)^n-m however at the back of the book it says the answer is p^m(1-p)^n-m
 
What I get is:

$$P(X)={n \choose m}p^m(1-p)^{n-m}$$

And this agrees with the binomial probability formula. :D

This is the probability of getting any sequence with $m$ heads, for any particular such sequence, then it would be:

$$P(X)=p^m(1-p)^{n-m}$$
 
markosheehan said:
when i put this all together i get (n ncr m)*p*(1-p)^n-m however at the back of the book it says the answer is p^m(1-p)^n-m
Was it possible that the problem asked for the probability of m heads in a row followed by n-m tails in a row? As MarkFl said, that probability if for any particular such sequence- "m heads in a row followed by n- m tails in a row" or "n- m tails in a row followed by m heads in a row" or "A head, then a tail, then a head, followed by m- 2 heads in a row, followed by n- m- 1 tails in a row", etc.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top