Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm doing a homework problem in my modern physics class and I'm stuck at a point. The question is "Show that the radial probability density of the 1s level in hydrogen has

its maximum value at r = a0, where a0 is the Bohr radius"

I know that the radial schrodinger equation will give me the part of the answer that I need. I know that ψ(r,θ,phi) is found by separation of variables and that once I find ψ I can find the probability at any r by using

P(r)dr = abs(ψ)^2dV = (abs(ψ)^2)*4∏(r^2)dr

I know what my r is. My problem is solving the radial schrodinger equation. I have no idea what to do. The book gives boundary conditions: lim(R(r)) r-->∞ = 0 and the angular components must be periodic (f(θ) = f(θ+2∏n))

Thanks in advance for any advice,

-MMM

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The radial schrodinger equation

**Physics Forums | Science Articles, Homework Help, Discussion**