JeffJo said:
Use four volunteers, and the four cards I described before (with (H,Mon), (H,Tue), (T,Mon), and (T,Tue) written on them). Deal the cards to the four, and put them in separate rooms. Using one coin flip, and waken three of them on Monday, and Tuesday. Leave the one whose dealt card matches both the day, and the coin flip, asleep. Ask each for her confidence that the coin matches her card.
Obviously, if you show each Beauty her card, her answer has to be the same as the original Beauty's. Since it is the same regardless of what card is dealt, you don't have to show it to any of them. If you don't show it to any of them, you can put all three awake Beauties in a room together to discuss their answers. All have the same information, so all answers have to be the same. Since exactly one of the three has a card that matches the coin flip, that answer must be 1/3.
You seem to be making a big assumption without explicitly stating it.
Suppose there are 1001 beauties: 1 winner who wakes up 1000 days in a row, and 1000 losers who wake up once in that time. Each thinks on sunday "There is a 1000/1001 chance that I wake up next to the winner."
Your assumption is that not only must they answer the same way to "am I the winner?", but that the correct way to compute probability is to divide it up equally among those with symmetric information. That is, even if I correctly believe there is a 1000/1001 chance that I will wake up next to the winner, when I actually do wake up next to someone I should split the probability evenly, giving myself a 1/2 chance of being the winner.
But you haven't justified that assumption. I argue that, if I am correct in believing I have a 1000/1001 chance of waking up next to the winner, then when I wake up next to someone it can make me think they are the winner. I am no longer indifferent to them because they are across from me when I wake up, which I didn't know would happen. But I did know I would wake up on the same day as myself.
The fact that they have symmetric information that leads them to believe I am the winner is odd, but I don't see why it requires me to "divide the probability evenly."
Dale said:
The bet is implied by the definition of credence. So it is every time she is asked about her credence, which is every interview.
They were stated in the original problem. Beauty is asked about her credence in each interview so the implied bet is necessarily offered each interview also.
This is just false. The definition of credence does not provide the ability to see into the future or the forgotten past.
You are adding that ability because credence is extremely hard to define in the actual problem. But sleeping beauty considering a bet being offered now does not imply that she can rely on the existence of specific past or future bets. That simply isn't in the definition, and it has nothing to do with cheating on the part of the experimenters.
It may be that we can't come up with a coherent way to apply the definition of credence to this situation. Or maybe we can say that she accepts bets on sunday when she has P(H) = 1/2. Or maybe we can use reflection to wednesday at noon when she has P(H) = 1/2. Or maybe we should consider "surprise", in which case the lottery example is compelling to me. The thirder answer means that sleeping beauty can become arbitrarily confident that she won an arbitrarily unlikely lottery.
Dale said:
A is Beauty is awakened during the experiment (i.e. with amnesia, being interviewed, and being asked her credence that it is heads).
Are you under the impression that beauty always has amnesia when asked her credence? The experiment goes like this:
1/2: sunday coin flip heads -> monday interview
1/2: sunday coin flip tails -> monday interview -> (amnesia regarding monday) -> tuesday interview
Note that there has been no amnesia before the monday interview, and that there is never any amnesia that severs the causal link between the sunday coin flip and the current interview.
This is a crucial point. It is not enough for sleeping beauty to be told the rules when she wakes up, even if you tell her it is the first time the experiment has ever been performed. If she has total amnesia, then it is too late. Her awakening is already selected by the time you explain, and it becomes a different problem. The unbroken causal link from sunday is essential.