We are given:
$$(ab)^2=(bc)^4=(ca)^x=abc$$
I will assume that all of the variables are positive and not equal to one.
Begin with:
$$(ab)^2=(ac)^x$$
Taking the natural log of both sides, we obtain after applying the rules concerning logarithms:
$$2\ln(a)+2\ln(b)=x\ln(a)+x\ln(c)$$
Now from:
$$(ab)^2=abc$$
We obtain:
$$c=ab$$
Hence:
$$2\ln(a)+2\ln(b)=x\ln(a)+x\ln(a)+x\ln(b)$$
$$2\ln(a)+2\ln(b)=2x\ln(a)+x\ln(b)$$
Solving for $$\ln(a)$$, we obtain:
(1) $$\ln(a)=\frac{2-x}{2(x-1)}\ln(b)$$
Next, we may use:
$$(bc)^4=(ac)^x$$
Taking the natural log of both sides, we obtain after applying the rules concerning logarithms:
$$4\ln(b)+4\ln(c)=x\ln(a)+x\ln(c)$$
Using $$c=ab$$, there results:
$$4\ln(b)+4\ln(a)+4\ln(b)=x\ln(a)+x\ln(a)+x\ln(b)$$
$$4\ln(a)+8\ln(b)=2x\ln(a)+x\ln(b)$$
Solving for $$\ln(a)$$, we obtain:
(2) $$\ln(a)=\frac{x-8}{2(2-x)}\ln(b)$$
Using (1) and (2), we obtain:
$$\frac{2-x}{2(x-1)}\ln(b)=\frac{x-8}{2(2-x)}\ln(b)$$
Multiplying through by $$\frac{2}{\ln(b)}$$, we find:
$$\frac{2-x}{x-1}=\frac{x-8}{2-x}$$
Cross-multiplying, we get:
$$(2-x)^2=(x-1)(x-8)$$
$$4-4x+x^2=x^2-9x+8$$
$$5x=4$$
$$x=\frac{4}{5}$$