The time evolution of a Hamiltonian

Click For Summary

Discussion Overview

The discussion revolves around the unitary time evolution of a Hamiltonian, specifically in the context of the interaction picture. Participants explore the implications of a Hamiltonian of the form ##H(t) = H_0 + V(t)##, the nature of the time evolution operator, and the conditions under which certain relationships hold true.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant poses a question about the validity of the expression ##V^\prime (t) = U_I(t) V^\prime(0) U^\dagger_I(t)## in the interaction picture.
  • Another participant provides a counterexample involving ##V(t) = \alpha \sin(\omega t)##, suggesting that this could invalidate the initial assumption about the relationship between ##V^\prime(t)## and ##V^\prime(0)##.
  • There is a discussion about the distinction between implicit and explicit time dependence in the context of operators in the interaction picture.
  • Some participants argue that if ##V(t)## does not depend on the position operator, then the time dependence is entirely explicit, leading to the conclusion that ##V'(t) = V(t)##.
  • Others clarify that this relationship holds only if ##V(t)## commutes with ##H_0## at all times, which is not generally the case.
  • Concerns are raised about the implications of time-dependent operators and the need for careful consideration of both explicit and implicit time dependencies.
  • One participant expresses a desire to clarify their understanding and indicates they are working towards a solution.

Areas of Agreement / Disagreement

Participants express differing views on the validity of certain expressions and the nature of time dependence in the interaction picture. There is no consensus on the implications of the examples provided or the conditions under which the discussed relationships hold true.

Contextual Notes

Participants highlight the complexities involved in distinguishing between explicit and implicit time dependence, as well as the conditions under which certain relationships between operators and Hamiltonians can be asserted.

Llukis
Messages
17
Reaction score
8
TL;DR
How to write the time evolution of a Hamiltonian
Dear everybody,
Let me ask a question regarding the unitary time evolution of a given Hamiltonian.
Let's start by considering a Hamiltonian of the form ##H(t) = H_0 + V(t)##. Then, I move to the interaction picture where the Schrödinger equation is written as
$$ i\hbar \frac{d}{dt} |\psi^\prime(t)\rangle = V^\prime (t) |\psi^\prime(t)\rangle \: , $$
where ##|\psi^\prime(t)\rangle = \exp \big( i H_0 t/\hbar \big)|\psi(t)\rangle = U^\dagger_0(t) |\psi(t)\rangle## and ## V^\prime (t) = U_0^\dagger (t) V(t) U_0(t)##. The solution of this equation in the interaction picture is of the form
$$|\psi^\prime(t)\rangle = U_I (t)|\psi^\prime(0)\rangle \: ,$$
with the unitary evolution operator defined as
$$U_I(t) = \mathcal{T} \exp \bigg( -\frac{i}{\hbar}\int_0^t V^\prime (t^\prime) dt^\prime\bigg) \: ,$$
where I have introduced the time ordering operator ##\mathcal{T}##. So far, so good. My question is if then I can declare that the following is true:
$$V^\prime (t) = U_I(t) V^\prime(0) U^\dagger_I(t) \: .$$
Perhaps, it is a simple question but I would like to clear up my doubt.
Thanks to all of you in advance :biggrin:
 
Last edited:
Physics news on Phys.org
What happens if, for example, ##V(t) = \alpha \sin(\omega t)##, such that ##V'(0) = 0##?
 
DrClaude said:
What happens if, for example, ##V(t) = \alpha \sin(\omega t)##, such that ##V'(0) = 0##?
Yes, so this counterexample is enough to reject my assumption, I guess.
So, then, when can we write a general time-dependent Hamiltonian as ##H(t) = U(t) H(0) U^\dagger(t)## ?
 
DrClaude said:
What happens if, for example, ##V(t) = \alpha \sin(\omega t)##, such that ##V'(0) = 0##?

Maybe I'm going crazy, but doesn't ##V'(0) = \alpha \omega##?
 
etotheipi said:
Maybe I'm going crazy, but doesn't ##V'(0) = \alpha \omega##?
The prime doesn't stand for the derivative here.
 
Llukis said:
Summary:: How to write the time evolution of a Hamiltonian

Dear everybody,
Let me ask a question regarding the unitary time evolution of a given Hamiltonian.
Let's start by considering a Hamiltonian of the form ##H(t) = H_0 + V(t)##. Then, I move to the interaction picture where the Schrödinger equation is written as
$$ i\hbar \frac{d}{dt} |\psi^\prime(t)\rangle = V^\prime (t) |\psi^\prime(t)\rangle \: , $$
where ##|\psi^\prime(t)\rangle = \exp \big( i H_0 t/\hbar \big)|\psi(t)\rangle = U^\dagger_0(t) |\psi(t)\rangle## and ## V^\prime (t) = U_0^\dagger (t) V(t) U_0(t)##. The solution of this equation in the interaction picture is of the form
$$|\psi^\prime(t)\rangle = U_I (t)|\psi^\prime(0)\rangle \: ,$$
with the unitary evolution operator defined as
$$U_I(t) = \mathcal{T} \exp \bigg( -\frac{i}{\hbar}\int_0^t V^\prime (t^\prime) dt^\prime\bigg) \: ,$$
where I have introduced the time ordering operator ##\mathcal{T}##. So far, so good. My question is if then I can declare that the following is true:
$$V^\prime (t) = U_I(t) V^\prime(0) U^\dagger_I(t) \: .$$
Perhaps, it is a simple question but I would like to clear up my doubt.
Thanks to all of you in advance :biggrin:
Be careful. That's a trap you get into easily. It's important to distinguish implicit and explicit time dependence. In this case you have
$$\hat{V}'=V(\hat{x}',t),$$
where the ##t## dependence is only the explicit time-dependence, but in the interaction picture also ##\hat{x}## (and ##\hat{p}##) depend on time. By definition they "move with ##\hat{H}_0##", i.e., the equations of motion for the operators read
$$\mathrm{d}_t \hat{x}'=\frac{1}{\mathrm{i} \hbar} [\hat{x}',\hat{H}_0].$$
Note that ##\hat{H}_0'=\hat{H}_0##. The solution of this equation of motion is
$$\hat{x}'(t)=\exp(\mathrm{i} \hat{H}_0 t/\hbar) \hat{x}'(0) \exp(-\mathrm{i} \hat{H}_0 t/\hbar).$$
But this implies that
$$V(\hat{x}'(t),t)=V[\exp(\mathrm{i} \hat{H}_0 t/\hbar) \hat{x}'(0) \exp(-\mathrm{i} \hat{H}_0 t/\hbar),t]=\exp(\mathrm{i} \hat{H}_0 t/\hbar) V(\hat{x}'(0),t)\exp(-\mathrm{i} \hat{H}_0 t/\hbar) .$$
This implies that you have to take into account the explicit time dependence in addition to the one coming in through the intrinsic time dependence of ##\hat{x}'(t)##, and that's why the equation of motion for ##V## reads
$$\mathrm{d}_t V(\hat{x}',t)=\frac{1}{\mathrm{i} \hbar}[V(\hat{x}',t),\hat{H}_0]+\partial_t V(\hat{x}',t),$$
where ##\partial_t## refers only to the explicit time dependence.
 
vanhees71 said:
Be careful. That's a trap you get into easily. It's important to distinguish implicit and explicit time dependence. In this case you have
$$\hat{V}'=V(\hat{x}',t),$$
where the ##t## dependence is only the explicit time-dependence, but in the interaction picture also ##\hat{x}## (and ##\hat{p}##) depend on time. By definition they "move with ##\hat{H}_0##", i.e., the equations of motion for the operators read
$$\mathrm{d}_t \hat{x}'=\frac{1}{\mathrm{i} \hbar} [\hat{x}',\hat{H}_0].$$
Note that ##\hat{H}_0'=\hat{H}_0##. The solution of this equation of motion is
$$\hat{x}'(t)=\exp(\mathrm{i} \hat{H}_0 t/\hbar) \hat{x}'(0) \exp(-\mathrm{i} \hat{H}_0 t/\hbar).$$
But this implies that
$$V(\hat{x}'(t),t)=V[\exp(\mathrm{i} \hat{H}_0 t/\hbar) \hat{x}'(0) \exp(-\mathrm{i} \hat{H}_0 t/\hbar),t]=\exp(\mathrm{i} \hat{H}_0 t/\hbar) V(\hat{x}'(0),t)\exp(-\mathrm{i} \hat{H}_0 t/\hbar) .$$
This implies that you have to take into account the explicit time dependence in addition to the one coming in through the intrinsic time dependence of ##\hat{x}'(t)##, and that's why the equation of motion for ##V## reads
$$\mathrm{d}_t V(\hat{x}',t)=\frac{1}{\mathrm{i} \hbar}[V(\hat{x}',t),\hat{H}_0]+\partial_t V(\hat{x}',t),$$
where ##\partial_t## refers only to the explicit time dependence.

Yes, you are right. I supposed that my time-dependent term ##V(t)## does not depend on ##x##, though.
When is this expression ##V^\prime (t) = U_I(t) V^\prime(0) U^\dagger_I(t)## valid?
 
I don't understand what ##V## then should be. Is it just that you switch on (and maybe off) a constant potential, i.e., ##V(t)## indepencent of ##\hat{x}##? Then the time-dependence is entirely explicit and ##\hat{U}_I## commutes with ##V## at all times, i.e., you simply have ##V'(t)=V(t)##.
 
vanhees71 said:
I don't understand what ##V## then should be. Is it just that you switch on (and maybe off) a constant potential, i.e., ##V(t)## indepencent of ##\hat{x}##? Then the time-dependence is entirely explicit and ##\hat{U}_I## commutes with ##V## at all times, i.e., you simply have ##V'(t)=V(t)##.

Well, ##V^\prime(t) = V(t)## is valid if ##V(t)## commutes with ##H_0## at all times, which is not the case, generally.
 
  • #10
If ##V## doesn't depend on any operators but is simply a constant (i.e., ##\propto \hat{1}##) at all times it commutes with ##H_0##.
 
  • #11
vanhees71 said:
If ##V## doesn't depend on any operators but is simply a constant (i.e., ##\propto \hat{1}##) at all times it commutes with ##H_0##.

But, in my case, ##V(t)## is a general time-dependent operator.
 
  • #12
Yes, and then you have to be very careful: In the interaction picture, there is a time dependence from the operators and the explicit time dependence, i.e., you have
$$V(\hat{x}'(t),\hat{p}'(t),t)=\exp(\mathrm{i} \hat{H}_0 t) V(\hat{x}'(0),\hat{p}'(0),t) \exp(-\mathrm{i} \hat{H}_0 t),$$
i.e., ##\hat{H}_0## only provides the time evolution for the time dependence which comes in from the time dependence of the (not explicitly time dependent) operators ##\hat{x}## and ##\hat{p}## but not the explicit one (see also my other posting above).
 
  • #13
Perhaps I am not explaining myself properly, it must be my fault. Do not worry, I am working a solution. If someone else is interested I will post here once I have finished :smile:
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K