mitchell porter
Gold Member
- 1,514
- 804
There's a paper today on N=2 U(N) strings and their N=1 limit - so I should say something more about the prospects and difficulties for this approach to the sbootstrap.mitchell porter said:Perhaps we should look at N=2 U(3) strings ... and see if there can be a sbootstrap-like sector.
The core results here pertain to strings in N=2 field theories with separate gauge superfields and quark superfields. This goes all the way back to Seiberg & Witten's 1994 model of confinement. Anyway - these are open strings with charged objects at the ends. Progress in understanding the formation of strings in supersymmetric field theory is great. But for the sbootstrap, we want the string itself to have a superpartner. This is why special values for which the field-string becomes a genuine string-theoretic object (see #269) are important - because then we know that the fermionic string exists too.
Another issue could be called "getting to chirality". N=2 theories are non-chiral, but N=1 is chiral, which is why standard susy phenomenology involves N=1 theories. Meanwhile, the sbootstrap combinatorics involve electric charge, but it's hypercharge that is fundamental in the standard model. Electric charge is what you're left with in the non-chiral fermionic world that follows electroweak symmetry breaking. It's a combination of hypercharge and weak isospin, which aren't even well-defined for hadrons.
And yet in the sbootstrap we want e.g. the leptons, which have hypercharge, to be superpartners of mesons, which are hadrons. We can definitely have N=1 field theories in which something like this is true - see the discussion of goldstone fermions (e.g. #222). So we need to keep probing to see how close this kind of model can get to the standard model. But I do wonder if we need some fresh perspective on electroweak symmetry breaking and the accompanying transition between chiral and non-chiral physics. @arivero expressed many thoughts on this over the years, and perhaps there is more of a connection between QCD and EWSB than we know (a clue being the similarity of the Fermi scale and the QCD scale).
Then there's quark-diquark supersymmetry, the original hadronic supersymmetry and the part of the sbootstrap that looks most like a bootstrap, given its self-referential nature. For me, the latest hope here is something called the "Melosh transformation". I have recently read that in the 1970s, this was pursued as a way of "transitioning between current and constituent quarks", but as an idea it "utterly failed" and was "insidiously counterproductive". Well, in this thread we love lost 1970s ideas about the strong interactions - and in fact that's where string theory came from - so let's have a look! And it turns out there was at least one attempt to apply Melosh transformations to hadronic supersymmetry. It doesn't have many citations, but one of them is the original sbootstrap paper...
What I suspect, is that there is some kind of duality or symmetry relating the light quarks to the heavy quarks. We already have a phenomenon in which QCD at high densities recapitulates low-density QCD. This is seen in color-flavor locking (the diquark condensates), and just this week, Ma and Rho had a paper elaborating on this recapitulation at high density (e.g. they propose that a high-density analogue of deconfinement exists, in which skyrmions come apart into instanton-like half-skyrmions). So I will be looking for supersymmetric Melosh transformations in these N=1 and N=2 theories, as the possible basis of quark-diquark supersymmetry.