tom.stoer said:
Sorry to say that, but I still don't understand why the SUSY explanation shall provide any benefit.
As far as I'm concerned, the question is: Is there a supersymmetric theory which gives us the standard model, and in which the numerical coincidences which Alejandro has noted, actually arise from supersymmetry? Alternatively, can we prove that no such theory exists? If it
can't be done, it would be good to understand why.
arivero said:
Can we find a superpartner to the QCD string?
This is a basic question about how supersymmetry works in theories like super-QCD, to which I do not know the answer. Supersymmetric theories are diverse and very complex. For example, my earlier remark about "gluinos bound by squarks" was rather naive; it looks like the most important interactions of gluinos are with
gluons. In discussions of MSSM, you will find people saying that the superparticles will in any case decay to ordinary particles, so composites would not be stable, but that is under the usual assumption that they must be too heavy to have been seen already. So among other things, one should probably look at the behavior of massless super-QCD first - a theory which already comes in many forms: "pure SQCD" with no quarks; SQCD with adjoint quarks, SQCD with quarks in the fundamental representation; SQCD with various numbers of flavors and colors. The 1990s results of Seiberg on electric-magnetic duality look to be of basic importance in understanding these theories.
In all these theories, massless and massive, the elementary fields can be arranged into superfields. But what about composite objects like mesons and baryons - are they generically part of supermultiplets as well? This is what I don't understand. By the way, http://en.wikipedia.org/wiki/Seiberg_duality" involves the appearance of an extra meson superfield on one side.
Back in comment #18, I mentioned a minor research program from string theory - "orientifold planar equivalence" - in which meson strings have baryon strings as superpartners. In the baryon string, the third quark is smeared along the length of the string. See these
http://physik.uni-graz.at/itp/iutp/iutp_09/welcome.php?sf=13", but not on the arxiv). In the third lecture, pages 12-13, Armoni actually mentions quark-diquark supersymmetry (Lichtenberg's hadronic supersymmetry), and says this is an alternative explanation (he explicitly says that a certain fermion in N=1 SYM becomes superpartner of the meson). Though I wonder if this picture, with the third quark smeared along the string, might arise from a symmetrized version of the quark-diquark string.
Anyway, obviously we need to look at this and see if it can be extended to include your extension of hadronic supersymmetry to leptons. The framework is unfamiliar to me ("type 0' string theory") so I don't know what pitfalls lie ahead.