Looking back over a year of speculation in this thread, I am alarmed by how little I really knew about the topics under discussion (e.g. standard model, supersymmetry). I don't think I said many false things, but I was really flying blind a lot of the time. I say this because, having attained to some relatively sober and at least superficially plausible ideas in recent comments, I want to sketch another big-picture approach, and that means a return to going far beyond what I know about.
I'll start with
Strassler's review of Seiberg duality. I have thought for a long time that the case of interest for the sBootstrap is SQCD, with Nc = 3 colors and Nf = 6 flavors, and N=1 or 2 supersymmetry. The N=2 case is self-dual; the N=1 case has a dual which also has 3 colors and 6 flavors, but in addition there is a new meson superfield.
For the sBootstrap to work, the quarks have to have the appropriate charges. So we might imagine the N=2 case with an extra U(1) gauged. Also, we give the top a large mass while keeping all the others massless (because the sBootstrap involves the combinatorics of five quarks, not six). Let us suppose we have gone from N=2 to N=1 supersymmetry along the way. Now suppose we take the Seiberg dual of this N=1 theory. The idea is that the leptons will emerge as part of the meson superfield, and the other five quarks will also acquire nonzero masses in the dual picture.
This picture is missing certain details. How exactly is supersymmetry broken? Where do weak interactions and parity violation come from? What about the Higgs? In recent comments I've speculated about getting scalars (Higgses, flavons) from composites. It may be possible to break an N=2 theory to get parity violation, but apparently it's challenging to do so in a way consistent with
experiment. The origin of fermion masses has to be more complicated than in the standard model because the usual mass-generating terms don't exist.
Without having shown that any of this really can work, I now want to add two further speculations to the mix.
First, Alejandro has pointed out that
the top quark Yukawa is unnaturally close to 1. It's not just of order 1, which would be technically natural; it's within less than 1% of being exactly 1. In my recent response to his observation (see preceding link), I've outlined the barest beginnings of a strategy for explaining this observation, in the light of new calculations by Rodejohann and Zhang. This could be added as a further epicycle on the "3-color, 6-flavor" approach to the sBootstrap that I just outlined (according to which there is a Seiberg duality, on one side of which the top Yukawa is "large" and the other Yukawas are zero, and on the other side of which is the standard model, with all quark Yukawas nonzero).
Second, way back in comment #110 (page 7) I mentioned that N=2 Nc=3 Nf=6 SQCD (with all quarks massless) has a twistor-string representation. The twistor space employed to define this
twistor string with flavor is very similar to the one used by Witten in his 2003 paper, it just has slightly different branes and boundary conditions. What I would like to know is whether one can reproduce
Heckman and Verlinde's recent construction using hits twistor space, in order to produce the N=2 theory coupled to gravity in a cosmologically realistic space. It's just an idea about what the ultimate context of a "3-color 6-flavor sBootstrap" might be.
Finally, I have to wonder if some version of my
"N=8 cosmology" could apply here. The idea there is to take a particular AdS4/CFT3 model with an impressionistic resemblance to reality, and then to use gravitino condensates to uplift it to positive spatial curvature. The model in question has an SU(3) x U(1) local symmetry, and under SU(3), the eight gravitinos of d=4 maximal supergravity form a triplet, an antitriplet, and two singlets. The idea is that the triplets are the dark energy and the singlets are the dark matter... The "N=2 sBootstrap" above also has SU(3) x U(1) symmetry (the U(1) gives the quarks the charges needed for the sBootstrap combinatorics), so one might hope that an embedding in M-theory could produce the desired gravitino spectrum.
The N=8 cosmology starts from a perturbed version of ABJM theory, while the twistor string (in its unflavored version) gives rise to N=4 Yang-Mills, and there are deep relationships between ABJM (an N=6 theory) and N=4 YM, but they're too deep for me to say anything sensible about how they might relate to this project. The most plausible conclusion of all might be that the theory we're looking for is to be obtained from a string theory construction of conventional intricacy (e.g. compactification on a Calabi-Yau of the sort that phenomenologists already study), and everything I've just discussed is still too simple - though it might be a step towards the real thing.