- #1
Shinnobii
- 2
- 0
Homework Statement
Problem 6.2 from Magnetic Resonance Imaging: Physical Principles and Sequence Design.
Show that [itex]M_o \approx \rho_o \frac{s(s+1)\gamma^2\hbar^2}{3kT}B_o[/itex]
Homework Equations
[itex] M_o = \rho_o \gamma \hbar \frac{\sum m_s e^{m_s(\hbar w_o / kT)}}{\sum e^{m_s(\hbar w_o / kT)}} [/itex],
where [itex] m_s [/itex] is the magnetic quantum number.
The Attempt at a Solution
Use the fact that [itex] kT >> \hbar w_o[/itex],
let [itex] \alpha = \frac{\hbar w_o}{kT} [/itex].
Then [itex] e^{\alpha m_s} \approx 1 + \alpha m_s [/itex].
[itex] M_o = \rho_o \gamma \hbar \frac{\sum m_s(1 + \alpha m_s)}{\sum (1 + \alpha m_s)} [/itex],
but [itex] \sum m_s = 0 [/itex], therefore
[itex] M_o = \rho_o \gamma \hbar \frac{\alpha \sum (m_s^2)}{1 + 0} [/itex].
Assuming the above is correct. Am I correct that [itex] \sum m_s^2 = s(2s+1)(s+1) [/itex]?
If so, I get,
[itex] M_o = \frac{\rho_o \gamma^2 \hbar^2 B_o}{kT} s(2s+1)(s+1) [/itex],
since [itex] w_o = \gamma B_o [/itex].
Clearly this is not the correct form, where have I gone wrong?