How Do Einstein Solids Calculate Microstates in Thermodynamics?

Click For Summary
The discussion explains how to calculate the number of microstates for two Einstein solids sharing energy in thermodynamics. For a case where solid A has 2 units of energy and solid B has 4, the microstates for solid A are determined to be 6, while solid B has 15 microstates. The total number of microstates for the combined system is calculated as ΩAΩB, resulting in 90 microstates. The discussion also introduces combinatorial methods, such as the multiset binomial coefficient, to simplify these calculations. Understanding these principles is crucial for analyzing energy distribution in thermodynamic systems.
iScience
Messages
466
Reaction score
5
http://i.imgur.com/O7iWyCF.jpg

the table on this image shows a system of two einstein solids isolated from the environment. with three oscillators and a total of 6 units of energies (hf). can someone explain to me how they got they're ΩA and ΩB values?
 
Physics news on Phys.org
Since there are two solids sharing six units of energy, they first break up the cases (solid A has 0 energy units, solid B has 6 energy units)=(0,6), (1,5), (2,4) , (3,3), (4, 2), (5,1), (6,0). Now your question is: How do I calculate the number of possible microstates there are for each solid in each of those cases? By microstates, I mean number of distinct ways to distribute the energy units among the solids' energy levels.

So let's say we're dealing with the case (2,4). How do we calculate how many possible microstates there are for each solid? Solid A has three oscillators and 2 units of energy. How can we distribute 2 units of energy among the three oscillators of solid A? The possibilities would look something like (1,1,0),(0,1,1),(1,0,1), (2,0,0),(0,2,0),(0,0,2). This means there are six possible microstates for solid A, so ΩA=6. Since there are six total units of energy, the remaining four units of energy are in solid B, which is also made of three oscillators. So we can calculate the number of possible microstates for B by the same counting method: the possible microstates of B are (4,0,0),(0,4,0),(0,0,4),(3,1,0),(3,0,1),(0,3,1),(1,3,0),(1,0,3),(0,1,3),(2,1,1),(1,2,1),(1,1,2),(2,2,0),(0,2,2),(2,0,2), which implies ΩB=15. Thus the total number of microstates for the composite system of both A and B is ΩAΩB=6*15=90 microstates (remembering we have assumed that A has 2 and B has 4).

As the photo you attached suggests, you can use quicker combinatorial identities to derive numbers like this, e.g. the binomial coefficient bracket. As an example of a real crafty combinatorics identity, if we want to calculate how many ways there are to distribute the 6 units of energy among the 6 oscillators (with no assumption about how many each subsystem has), we use the multiset binomial coefficient [see http://en.wikipedia.org/wiki/Binomial_coefficient#Multiset_.28rising.29_binomial_coefficient ] according to :

\Omega = \left ( \begin{pmatrix} 6 \\ 6\end{pmatrix}\right)= \begin{pmatrix}6+6-1 \\ 6\end{pmatrix} = \frac{(6+6-1)!}{((6+6-1)-6)!6!}=\frac{11!}{5!6!} = 462 as your book states.

If we wanted to do the example I did earlier--where we assume A has 2 and B has 4--we could write:
\Omega_A\Omega_B = \left ( \begin{pmatrix} 3 \\ 2\end{pmatrix}\right)\left ( \begin{pmatrix} 3 \\ 4\end{pmatrix}\right)= \begin{pmatrix}3+2-1 \\ 2\end{pmatrix} \begin{pmatrix}3+4-1 \\ 4\end{pmatrix}=\frac{4!}{(4-2)!2!}\frac{6!}{(6-4)!4!}=6 \cdot 15 = 90
 
Last edited:
  • Like
Likes 1 person

Similar threads

  • · Replies 3 ·
Replies
3
Views
6K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
3
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
39
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K