Those Pictures (Representations) in QM and the density equations

Robert_G
Messages
36
Reaction score
0
Hi there:

I am reading a book (Atom-Photon interaction by Claude Cohen-Tannoudji, Page 448) and the following things gave a big headache.

(1) Is there a density equation in Schrodinger Picture. because I encounter one, like:
##i \hbar \frac{d \sigma}{dt}=[\hat{H}, \sigma]##
and ##\hat{H}## contains the Hamiltonian of the atom, photon, and there interaction. So this is in Schrodinger Representations. right?

(2) The correlation ##\langle \mathscr{L}_+(\tau)\mathscr{L}_-(0)\rangle## is calculated step by step, from the equation in (1). So this is also in Schrodinger Representation. But the "double" correlation ##\langle \mathscr{L}_+(t)\mathscr{L}_+(t+\tau)\mathscr{L}_-(t+\tau)\mathscr{L}_-(t)\rangle## is in Heisenberg Representation, and this is clearly stated in the book, because, as the book said, the operators in that "double" correlation are in Heisenberg Representation. So those two correlations are from different Represetations?

Ps: ##\mathscr{L}_+## is the atomic upper operator, and ##\mathscr{L}_-## is the atomic lower operator.

HELP ME!
 
Physics news on Phys.org
It's a rough journey to learn this things, oh, my brain.
 
(1) Supposing that sigma is the density matrix, yes, you are using the Schrödinger picture

(2) Expectation values don't really specify which picture is being used. You can convert between pictures by rearranging the time evolution operator: <C(t)> = tr{σ C(t)} = tr{σ U(t)+CU(t)} = tr {U(t)σU+(t) C} = tr {σ(t) C} = <C>t
 
  • Like
Likes 1 person
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Back
Top