Hi, there. The following is copied from a book " atom-photon interaction " by Prof. Claude Cohen-Tannoudji, Page 415.(adsbygoogle = window.adsbygoogle || []).push({});

I do not understand it at all. I do know some thing about the coherent state. If the laser mode is in a coherent state ##|\alpha \exp(-i\omega_L t)\rangle## with ##\alpha## being real, Then the average value

##\langle\alpha \exp(-i\omega_L t)|E(R)|\alpha \exp(-i\omega_L t)\rangle=\mathscr{E}_0 \cos(\omega_L t)##

with

##\mathscr{E}_0=2 \epsilon \sqrt{\frac{\hbar \omega_L}{2 \epsilon V}} \sqrt{\langle N \rangle}##

##\langle N \rangle = \alpha^2##

and

##E(R)=\sqrt{\frac{\hbar \omega_L}{2 \epsilon_0 V}}\epsilon_L(a+a^{\dagger})##

such as

##a |\alpha\rangle = \alpha |\alpha\rangle##

and

##|\alpha\rangle = e^{-|\alpha|^2/2} \sum_n \frac{\alpha^n}{\sqrt{n!}}|n\rangle##

But I don't understand what's going on here.

(1) Why the coherent state is ##|\alpha \exp(-i\omega_L t)\rangle##?

(2) ##\langle N \rangle = \alpha^2## means ##\langle \alpha \exp(-i\omega_L t)| N |\alpha \exp(-i\omega_L t)\rangle = \alpha^2##?

(3) Where does the ##\cos(\omega_L t)## come from in the first equation?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A calculation about coherent state

**Physics Forums | Science Articles, Homework Help, Discussion**