- #1
- 36
- 0
Hi, there. The following is copied from a book " atom-photon interaction " by Prof. Claude Cohen-Tannoudji, Page 415.
I do not understand it at all. I do know some thing about the coherent state.
such as
##a |\alpha\rangle = \alpha |\alpha\rangle##
and
##|\alpha\rangle = e^{-|\alpha|^2/2} \sum_n \frac{\alpha^n}{\sqrt{n!}}|n\rangle##
But I don't understand what's going on here.
(1) Why the coherent state is ##|\alpha \exp(-i\omega_L t)\rangle##?
(2) ##\langle N \rangle = \alpha^2## means ##\langle \alpha \exp(-i\omega_L t)| N |\alpha \exp(-i\omega_L t)\rangle = \alpha^2##?
(3) Where does the ##\cos(\omega_L t)## come from in the first equation?
If the laser mode is in a coherent state ##|\alpha \exp(-i\omega_L t)\rangle## with ##\alpha## being real, Then the average value
##\langle\alpha \exp(-i\omega_L t)|E(R)|\alpha \exp(-i\omega_L t)\rangle=\mathscr{E}_0 \cos(\omega_L t)##
with
##\mathscr{E}_0=2 \epsilon \sqrt{\frac{\hbar \omega_L}{2 \epsilon V}} \sqrt{\langle N \rangle}##
##\langle N \rangle = \alpha^2##
and
##E(R)=\sqrt{\frac{\hbar \omega_L}{2 \epsilon_0 V}}\epsilon_L(a+a^{\dagger})##
I do not understand it at all. I do know some thing about the coherent state.
such as
##a |\alpha\rangle = \alpha |\alpha\rangle##
and
##|\alpha\rangle = e^{-|\alpha|^2/2} \sum_n \frac{\alpha^n}{\sqrt{n!}}|n\rangle##
But I don't understand what's going on here.
(1) Why the coherent state is ##|\alpha \exp(-i\omega_L t)\rangle##?
(2) ##\langle N \rangle = \alpha^2## means ##\langle \alpha \exp(-i\omega_L t)| N |\alpha \exp(-i\omega_L t)\rangle = \alpha^2##?
(3) Where does the ##\cos(\omega_L t)## come from in the first equation?