B Thought Experiment: Does Gravity's Compression Warm an Object?

AI Thread Summary
The discussion explores whether a homogenous crystalline object in space, subjected to gravity's compressive force, would cool to the temperature of its surroundings or remain warm indefinitely. It questions if compression inherently warms an object, even when atomic movement ceases, and whether the presence of matter guarantees a temperature above that of surrounding space. A follow-up considers if gravity operates in pulses at a quantum level, potentially affecting the object's temperature similarly to how repeated bending warms glass. The conclusion suggests that, without nearby heat sources, the object would eventually cool to 2.725 degrees Kelvin. The thought experiment raises intriguing implications about the relationship between gravity, compression, and temperature.
Cayman
Messages
1
Reaction score
0
TL;DR Summary
Thought experiment and question concerning whether gravity causes a permanent temperature increase in matter.
Thought experiment:
(1.1) You have a homogenous object, made of one element, floating in space.
(1.2) Gravity has completed the process of accelerating its atoms and molecules into the final state, such that the object is a crystalline sphere.
(1.3) Gravity continues to act on the object, even though the atoms and molecules are now in positions that gravity cannot overcome or move.

Question: Does this object:
(2.1) cool to the temperature of the surrounding space or
(2.2) remain warm for ever due to the eternal compressive force on the object due to the eternal acceleration of gravity on its atoms and molecules?

Asked two other ways:
(3.1) Does compression always warm an object at any scale, even when the compressive force fails to move any of the object's atoms or molecules?
(3.2) Does the existence of matter always imply a temperature greater of the matter than of the surrounding space?

Follow-up question:
(4.1) If gravity occurs in pixels (quantum) and in waves, then this would suggests that, at some sufficiently small scale of time and space, gravity acts in pulses of squeeze and release. If so then would this contribute to an effect of "working" on a crystal, similar to warming up glass by bending repeatedly without breaking it?
 
Physics news on Phys.org
Cayman said:
Summary:: Thought experiment and question concerning whether gravity causes a permanent temperature increase in matter.

Question: Does this object:
(2.1) cool to the temperature of the surrounding space
Assuming it was not near any heat producing object then it would cool down to 2.725 degrees Kelvin
 
Last edited:
  • Like
Likes vanhees71 and davenn
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top