I Time dilation from galactic gravitational mass

Click For Summary
The discussion centers on the effects of time dilation due to gravitational mass in galaxies and its implications for observed rotational speeds. Participants debate whether the time dilation experienced by stars at varying distances from a galactic center is significant enough to account for discrepancies in acceleration, typically attributed to dark matter. It is concluded that both the tangential speed of stars and the change in gravitational potential are too small to produce measurable relativistic effects that could explain galaxy rotation curves. The conversation also touches on the need for more accessible research and estimates regarding these effects, emphasizing that existing models already incorporate such calculations. Ultimately, the consensus is that while relativistic effects exist, they are negligible in the context of galaxy dynamics.
  • #31
marcosdb said:
The fact that "dark matter" is proportional to the visible mass is why I had an inkling that it seems highly likely that it's just a side-effect of matter we're not accounting for
I don't think it is. There are dark matter-free galaxies and cases where the halo is mis-aligned with the visible matter.
marcosdb said:
I am curious, though, why time dilation couldn't be one of these pieces (I agree, it may not be the only one)

Above, Peter points out that at most, it's 3/2, "same order of magnitude"
It's way too small. @PeterDonis was saying the real value of time dilation must be the same order of magnitude as his "everything is spherical" approximation, not that it was similar to the magnitude of dark matter effects. You can plug a galaxy mass and radius into his formula and see this easily enough.
marcosdb said:
So it seems that time dilation could actually push the predicted value a lot closer, and would also explain the proportionality to visible matter
No. You're misreading Peter's comment.
 
Last edited:
  • Like
Likes PeterDonis
Physics news on Phys.org
  • #32
marcosdb said:
Peter points out that at most, it's 3/2, "same order of magnitude"
You need to read more carefully. What I actually said is that the gravitational time dilation at the center of a spherically symmetric massive body of constant density is 3/2 of the gravitational time dilation at the surface of that body. And we already know, from calculations that others had already posted in this thread, that the gravitational time dilation at the surface of such a body is many orders of magnitude too small to account for galaxy rotation curves. Therefore the gravitational time dilation at the center is also many orders of magnitude too small to account for galaxy rotation curves.
 
  • Like
Likes PeroK
  • #33
Ibix said:
There are dark matter-free galaxies
Well, maybe. Two have been identified, right next to each other, and the "DM Free" inference depends on the distance, and the distance a) is questionable, or at least arguable (as determined by people actually arguing about it in the literature), and b) correlated between the two examples.

Further, the history of how these galaxies managed to be stripped of their DM is far from cleart: the story is not that they never had any, the story is that they used to have some but now it's gone. However, this interaction has not disrupted the stellar population. You need to have this happen via multiple "glancing blows" in interactions with other galaxies.

I don't think this is a settled issue, and am pretty sure everybody would like to see more examples discovered.
 
  • Like
  • Informative
Likes phinds, PeroK and Ibix
  • #34
Ibix said:
It's perhaps worth noting that people do seriously consider the possibility that other GR effects are responsible for "dark matter" galaxy rotation curves. Time dilation won't cut it, but there's an awful lot of rotating mass in a galaxy and we know that rotating masses can (in some circumstances) "frame drag" and cause free fall paths to co-rotate. It's not inconceivable that this kind of effect could cause galaxies to spin faster than Newton would suggest. There was a relatively recent solid proposal along these lines by a man called Deur.
I wouldn't call it "solid". Not at all. See the Deur thread over in BTSM.

Ibix said:
The jury is still very much out on that one (the maths is not simple, even by GR professionals' standards), [...]
Well, I reckon it's not worth anything. Try getting Tully-Fisher out of Deur's method... :oldfrown:
:headbang:

Moreover, these flat rotation curve effects happen in regimes of very low velocity, and very weak fields (hence low acceleration) -- which is why Newtonian gravity is used in much of standard galactic dynamics theory. But the observed RC phenomena could more accurately be called "sub-Newtonian" -- meaning slower+weaker than we're normally familiar with in terrestrial and solar gravitation. Imho, going from Newtonian up to SR+GR is headed in the wrong direction.
 
  • Like
  • Informative
Likes Ibix and PeroK
  • #35
marcosdb said:
I am curious, though, why time dilation couldn't be one of these pieces
In the low-acceleration regime, the observations point to a scale-invariant equation of motion governed by an acceleration scale constant (i.e., different from the usual EoM in Newtonian gravity, which follows the non-uniform scaling implied by Kepler's 3rd law), together with the well-known Tully-Fisher law. (Newbies tend to ignore, or be unaware of, the importance of the latter phenomenon.)

See this MOND paper which explains why these two pieces of phenomena severely restrict the ways that one might fruitfully modify the Newtonian (or even GR) equations of motion.
 
  • Informative
Likes PeroK
  • #36
marcosdb said:
Wouldn't the change in gravitational potential be significantly different for a 3D sphere (where the mass is evenly distributed in 3-space and as we move in 3 dimensions, the calculation is ^3) vs a flat surface (where the mass isn't evenly distributed in 3-space and so it's ^2)?
You can get a feel for the difference by just looking at the Newtonian case -- where the non-relativistic gravitation (Poisson) equations are solved for various mass distributions. This is explained in considerable detail at Bovy's Galactic Dynamics Online Book, especially ch8 et. seq.
 
  • Informative
Likes PeroK
  • #37
strangerep said:
I wouldn't call it "solid". Not at all. See the Deur thread over in BTSM.
In the context of this thread I was merely meaning that it was a fleshed-out mathematical proposal from a serious physicist, as opposed to the "hey wouldn't it be cool if..." idea in this thread which can be dismissed with an order of magnitude calculation. I suspect I'm not qualified to have an opinion on Deur's idea's plausibility.
 
  • Like
Likes Dale and PeroK
  • #38
Ibix said:
In the context of this thread I was merely meaning that it was a fleshed-out mathematical proposal from a serious physicist, [...]
I don't think it's "fleshed out".

But I hope other people here with good proficiency in GR will take a closer look at it, and offer their well-considered opinions on this point. :oldsmile:
 
  • #39
marcosdb said:
The fact that "dark matter" is proportional to the visible mass is
This is not a fact. The mass-to-light ratio for galaxies varies by quite a bit: more than a factor of about 5.
 
  • #40
Vanadium 50 said:
This is not a fact. The mass-to-light ratio for galaxies varies by quite a bit: more than a factor of about 5.
Another missuse of "proportionality" :(
 
  • #41
Well, you can always divide any two quantities A by B and say "look, they are proportional!" Just not sure where that gets you.
 
  • Like
Likes vanhees71 and PeroK
  • #42
So the claim is that even with a difference in mass density on the order of 10^8 between the region of the core of the galaxy and the solar neighborhood for example, the difference in time dilation and length expansion is negligible. Hard to believe.
 
  • Skeptical
Likes Vanadium 50, weirdoguy and PeroK
  • #43
Musant said:
Hard to believe.
You don't have to "believe". You can do the math and see. Or you could just read the earlier posts in this thread where the math is already done.
 
  • Like
Likes Ibix and jbriggs444
  • #44
Musant said:
So the claim is that even with a difference in mass density on the order of 10^8 between the region of the core of the galaxy and the solar neighborhood for example, the difference in time dilation and length expansion is negligible. Hard to believe.
Perhaps you've watched Interstellar too many times.
 
  • #45
PeterDonis said:
You don't have to "believe". You can do the math and see. Or you could just read the earlier posts in this thread where the math is already done.
The time dilation factor I had seen previously, and the one I usually consider is simply SQRT(1-2GM/(rc^2)).

Question for you: In a time dilated reference frame where the time units of c are dilated, shouldn't one also expand units length such that c remains constant? If so, wouldn't the radius term in the expression for time dilation factor be a function rather than a constant?
 
  • #46
Musant said:
The time dilation factor I had seen previously, and the one I usually consider is simply SQRT(1-2GM/(rc^2)).
This is for a single spherically symmetric gravitating body. As was already pointed out earlier in the thread (which, btw, is almost two years old), a galaxy does not even come close to meeting that description.

Musant said:
In a time dilated reference frame where the time units of c are dilated
What does this even mean?
 
  • #47
PeterDonis said:
This is for a single spherically symmetric gravitating body. As was already pointed out earlier in the thread (which, btw, is almost two years old), a galaxy does not even come close to meeting that description.


What does this even mean?
I apologize if that wasn't clear. The units of c are, for example, in meters per second. Time dilation affects the length of a second. We assume that light always travels the same number of meters per second in a vacuum. So if the second is longer, then light would travel a greater number of meters in that longer interval. It follows that when time is dilated, length should also 'dilate' in order that the constant c remain constant. But, I'm happy to be shown the error in that logic. Thank you for your courteous replies.
 
  • #48
Musant said:
Time dilation affects the length of a second.
No, it doesn't. Time dilation amounts to a comparison of arc lengths along different timelike worldlines. Those arc lengths are measured in the same seconds along both worldlines.

Musant said:
I'm happy to be shown the error in that logic.
Your starting premise is wrong. See above.
 
  • #49
PeterDonis said:
No, it doesn't. Time dilation amounts to a comparison of arc lengths along different timelike worldlines. Those arc lengths are measured in the same seconds along both worldlines.


Your starting premise is wrong. See above.
But you might find that the two things 'amount' to the same.
 
  • Sad
Likes weirdoguy
  • #50
Musant said:
But you might find that the two things 'amount' to the same.
No, you won't.

At this point I am closing the thread since we are already off topic, and it's two years old anyway. @Musant, I would strongly encourage learning more about how relativity actually works.
 

Similar threads

  • · Replies 45 ·
2
Replies
45
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
572
  • · Replies 103 ·
4
Replies
103
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
27
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
6K