- #1
- 2
- 0
If A and B are fermionic operators, and T the time-ordering operator, then the standard definition is
T(AB) = AB, if B precedes A
= - BA, if A precedes B.
Why is there a negative sign? If A and B are space-like separated then it makes sense to assume that A and B anticommute. But if they are time-like separated we don't know if
they anticommute. What am I missing?
T(AB) = AB, if B precedes A
= - BA, if A precedes B.
Why is there a negative sign? If A and B are space-like separated then it makes sense to assume that A and B anticommute. But if they are time-like separated we don't know if
they anticommute. What am I missing?