- #1
- 14,273
- 6,747
- TL;DR Summary
- Is the bosonization formula an operator identity?
Shankar, in the book "Quantum Field Theory and Condensed Matter", at page 328 writes the famous bosonization formula in the form
$$\psi_{\pm}(x)=\frac{1}{\sqrt{2\pi\alpha}} e^{\pm i \sqrt{4\pi} \phi_{\pm}(x)}$$
and then writes: "This is not an operator identity: no combination of boson operators can change the fermion number the way ψ can."
I don't understand this statement. ##\psi_{\pm}(x)## satisfies anticommutation relations, so why can't it change the fermion number the way ψ can?
$$\psi_{\pm}(x)=\frac{1}{\sqrt{2\pi\alpha}} e^{\pm i \sqrt{4\pi} \phi_{\pm}(x)}$$
and then writes: "This is not an operator identity: no combination of boson operators can change the fermion number the way ψ can."
I don't understand this statement. ##\psi_{\pm}(x)## satisfies anticommutation relations, so why can't it change the fermion number the way ψ can?