Time that a comet spends inside Earth's orbit

Click For Summary
SUMMARY

The discussion focuses on calculating the time a comet spends inside Earth's orbit using the effective potential of a parabolic orbit and angular momentum equations. The user derived the angular momentum L as L = m√(2GMrP) and attempted to find the area A to compute time T using the relationship T = A/α. However, discrepancies in the integration process and the final time calculation led to confusion, with the user receiving feedback on the need for proper parentheses in the integral and the expectation of a larger time value than initially calculated.

PREREQUISITES
  • Understanding of parabolic orbits and effective potential
  • Knowledge of angular momentum and areal velocity in orbital mechanics
  • Familiarity with polar coordinates and integration techniques
  • Basic grasp of gravitational physics, specifically Newton's law of gravitation
NEXT STEPS
  • Study the principles of orbital mechanics, focusing on parabolic trajectories
  • Learn about polar integration techniques and their applications in physics
  • Explore the use of software tools for numerical integration in physics problems
  • Investigate the relationship between angular momentum and time in celestial mechanics
USEFUL FOR

Astronomy students, physicists, and anyone interested in celestial mechanics and the dynamics of cometary orbits will benefit from this discussion.

matteo446
Messages
2
Reaction score
0
Homework Statement
A comet of mass m is orbiting around the Sun in a parabolic orbit. Assume that Earth's orbit is circular with radius rT and that it's coplanar with the orbit of the comet.

Determine the time T that the comet spends inside Earth's orbit if the periaster (nearest point to the Sun) of the comet is rP=rT/3.

Determine the maximum time that the comet can spend inside Earth's orbit tMax.
Relevant Equations
U(r) = L^2/(2mr^2) - GmM/r where L is angular momentum of the body from P, m is the mass of the body orbiting r(θ) = ed/(1+ecos(θ)) where e is the eccentricity and d is the distance from the directrix
image-001.png


I tried in the first place to use the effective potential of a parabolic orbit which is 0 to get the angular momentum L.

Evaluating the function U(r) at r = rP i get U(rP) = L^2/(2m(rP)^2) - GmM/rP = 0.

Here I get L = m√(2GMrP).

Now the relationship between angular momentum L and areal velocity α is L/2m = √((1/6)GMrT) which is a constant of motion.

My idea is to find an area and use this value of α to obtain time T.

With respect to a polar frame of reference centered at S i used the general equation for a conic in polar coordinates r(θ) = ed/(1+ecos(θ)) with e=1 for a parabola so r(θ)=d/(1+cos(θ)).

I know r(0) = rP so replacing rP = d/2 and d = 2rP.

So the comet follows the orbit of equation r(θ) = 2rP/(1+cos(θ)).

Now I want to find the angle λ to replace in the equation to get rT as the point of intersection between the orbits satisfies also the equation for the orbit of the Earth r(θ) = rT.

I get λ = arcos(-1/3) ≈ 1.9 rad.

So (here i think I made mistakes as i don't know polar integration) integrating from 0 to 1.9 and multiplying by 2 because of symmetry the area A is 2*(1/2 ∫(2rP/1+cosθ)^2dθ) ≈ 1.9rP^2 = (1.9/9)*rT^2.

Now simply T = A/α = ((1.9/9)*rT^2)/√((1/6)GMrT) ≈ 9.5*10^-3s which is very wrong.

I don't know how to start for the second question.
 
Physics news on Phys.org
I think your work is essentially correct.

However, you wrote
matteo446 said:
A is 2*(1/2 ∫(2rP/1+cosθ)^2dθ) ≈ 1.9rP^2
You need another set of parentheses to enclose the ##1 + \cos \theta## in the denominator. I don't get the factor of 1.9. I get a number between 4 and 5. (I'm lazy, so I used software to do the integration.)

I don't know how you got ##T## to be of the order of ##10^{-2}## seconds. Your equation for ##T## should yield a large number in seconds if you plug in the correct numbers.

I don't know how to start for the second question.
You'll need to let ##r_p## be a variable. You could let ##x = r_p/r_T##. Find ##\cos \theta##, ##L##, ##A##, and ##T## in terms of ##x##.
 
Thanks for your help. :smile:
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
882
Replies
7
Views
3K
Replies
8
Views
2K
Replies
5
Views
4K