I TISE solutions should be combinations-of-eigenstates, why this is not?

  • I
  • Thread starter Thread starter JackeTheDog132
  • Start date Start date
  • Tags Tags
    Quantum phyics
JackeTheDog132
Messages
1
Reaction score
0
TL;DR Summary
Why a wave pocket is not a solution of the TISE?
I would really appreciate some help with a question I have aboute the TISE (Sch. tipe indipendent equation). This is a linear equation and linear combination of the solution should be solution too. The problem is that for the free particle, which solution can be written like exp[-ikx], a linear combination using gaussian coefficent is not anymore a solution (we should get a wave pocket this way). Of course taking a combination considering the temporal dipendence give a solution to the TDSE. My question is why that does not appen in the TISE case.
 
Physics news on Phys.org
:welcome:

Can you express your question more mathematically? I'm not sure what you are asking.
 
PeroK said:
Can you express your question more mathematically? I'm not sure what you are asking.
I agree. It also sounds like you are trying to model a traveling wave with a time-independent model, which of course will not work.
 
  • Like
Likes dextercioby
JackeTheDog132 said:
This is a linear equation and linear combination of the solution should be solution too.
Careful. What you are calling the "TISE" is not a single equation. It is many different equations, one for each different eigenvalue. So the only case where you can form a linear combination of solutions to get another solution is degeneracy, i.e., there are multiple eigenvectors with the same eigenvalue.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top