- #1

Physicslad00

- 13

- 1

- TL;DR Summary
- The linear combination of the eigenfunctions gives solution to the Schrodinger equation. For a system with time independent Hamiltonian the Schrodinger Equation reduces to the Time independent Schrodinger equation(TISE), so this linear combination should be a solution of the TISE. It is not always true(when eigenvalues are not equal). Why is it so?

The linear combination of the eigenfunctions gives solution to the Schrodinger equation. For a system with time independent Hamiltonian the Schrodinger Equation reduces to the Time independent Schrodinger equation(TISE), so this linear combination should be a solution of the TISE. It is not always true(when eigenvalues are not equal). Why is it so?

Please tell me where am I going wrong.

Please tell me where am I going wrong.