To find logarithm of a complex number

In summary, the experts discuss how to find the natural logarithm of a complex number and convert it to base 10. They mention an external link for more details and explain that the definition of ln(z) is the integral of the differential dw/w along a path from w = 1 to w = z, but not passing through w=0. They also discuss the ambiguity in the choice of path and how the real and complex parts of the log function are determined. There is a debate about the definition of ln(x) and the properties it should have.
  • #1
AlbertEinstein
113
1
#2

Hi,
Well can anyone tell me how to find the natural logarithm of a complex number p + iq.
Also please tell me how to convert it into logarithm to the base 10.
An external link to a webpage (where all the details are given) will be appreciated.
 
Mathematics news on Phys.org
  • #2
Write the complex number in polar form and it should be evident how to find the logarithm.

To convert the logarithm to base 10 use log z = ln z/ln 10.
 
  • #3
Of course, since the argument of a complex number (the angle part of the polar form) can have any multiple of [itex]2\pi[/itex] added to it, the log function is, like most complex functions, multi-valued.
 
  • #4
the defn of ln(z) is the integral of the differential dw/w along a path from w = 1 to w = z, but not passing through w=0. the ambiguity is in the choice of that path.

if you transform it to r,theta coordinates I am guessing that differential becomes dr/r + i dtheta. since dr/r has a primitive, namely it equals dln|r|, which is dwefined everywhere except at 0, that part of the integral is not dependent on the path.

but the other part idtheta, does depend on how much angle is swept out wrt the origin by the whole path.so the real part of the log of z is just the log of the absolute value |z|, but the complex part equals i times some determination of the angle arg(z).

I didn't really calculate this out just now, but this is probably very close to correct, as this is one of my long time favorite objects. I never understood complex functions or logs until I saw it explained roughly this way in Courant's calculus book (where else?).
 
  • #5
thats why 3^(ipi) = -1, i.e. minus one has absolute value 1 so real log zero, but angle pi, so complex part ipi.

and also why e^(2ipi) = 1, since one determination of the angle of 1 is 2pi.
 
  • #6
I remember something like

Ln(z) = Ln(|z|) + iArg(z)

where |z| is the amplitude
and arg(z) is the angle in radians between the point z and x axis.
 
  • #7
Kaan said:
I remember something like

Ln(z) = Ln(|z|) + iArg(z)

where |z| is the amplitude
and arg(z) is the angle in radians between the point z and x axis.

And, again, since the angle Arg(z) + [itex]2kpi[/itex], for any integer i, gives the same point, ln(z)= ln(|z|)+ i Arg(z)+ [itex]2ki\pi[/itex]
 
  • #8
mathwonk said:
the defn of ln(z) is the integral of the differential dw/w along a path from w = 1 to w = z, but not passing through w=0. the ambiguity is in the choice of that path.

i don't really want to start anything, wonk, but while i believe that is true, is it the definition?

i didn't even think that was the definition for the real logarithm

[tex] \log(x) \equiv \int_1^x \frac{1}{u} du [/tex]

i thought that the definition had more to do with

[tex] \log(x y) = \log(x) + \log(y) [/tex]

that's what defines some function as a logarithm.

then it can be shown that for the function:

[tex] f_A(x) \equiv \int_1^x \frac{A}{u} du [/tex]

[tex] f_A(xy) = \int_1^{xy} \frac{A}{u} du = \int_1^{x} \frac{A}{u} du + \int_x^{xy} \frac{A}{u} du = \int_1^{x} \frac{A}{u} du + \int_1^{y} \frac{A}{u} du = f_A(x) + f_A(y)[/tex]

so we can say that fA is logarithmic. and the natural logarithm was such that numerator A is 1.

isn't this a difference between what is definition and what is a resulting property?
 
  • #9
They're both perfectly valid definitions. Some properties are easier to prove using one choice of definition over the other.
An example is this PDF using an alternate definition of the exp(x), and deriving some specific results from that.
http://www.math.lsu.edu/~mcgehee/Exp.pdf
 
  • #10
rbj said:
i don't really want to start anything, wonk, but while i believe that is true, is it the definition?

i didn't even think that was the definition for the real logarithm

[tex] \log(x) \equiv \int_1^x \frac{1}{u} du [/tex]

i thought that the definition had more to do with

[tex] \log(x y) = \log(x) + \log(y) [/tex]

that's what defines some function as a logarithm.

then it can be shown that for the function:

[tex] f_A(x) \equiv \int_1^x \frac{A}{u} du [/tex]

[tex] f_A(xy) = \int_1^{xy} \frac{A}{u} du = \int_1^{x} \frac{A}{u} du + \int_x^{xy} \frac{A}{u} du = \int_1^{x} \frac{A}{u} du + \int_1^{y} \frac{A}{u} du = f_A(x) + f_A(y)[/tex]

so we can say that fA is logarithmic. and the natural logarithm was such that numerator A is 1.

isn't this a difference between what is definition and what is a resulting property?
What makes you think there is such a thing as such a thing as "the" definition of ln(x)?
Any function can have many different equivalent definitions. though it is a matter of taste, I would think that a definition that gives a direct formula ([itex]ln(x)= \int_1^x dt/t[/itex]) is better than a definition that says the fnction has such and such properties (ln(x) is the function f such that f(xy)= f(x)+ f(y) and f(1)= 0)/
 
  • #11
HallsofIvy said:
What makes you think there is such a thing as such a thing as "the" definition of ln(x)?

i guess i normally think that a definition comes first, chronologically in the history or pedagogy.

in that sense, i think of logarithms as the generalized exponent of some given base (which is "e" if it's a "natural logarithm" - why e takes on the value that it does has to do with that integral, that wonk was using as a defining expression).

i didn't like it, but in my old calc book (Seeley, and i generally really like the book), they simple defined the natural exponential of a complex number as

[tex] e^z = e^{\mathrm{Re}(z)} \cos\left(\mathrm{Im}(z)\right) \ + \ i e^{\mathrm{Re}(z)} \sin\left(\mathrm{Im}(z)\right) [/tex]

and then stated that the definition was a good one since it reverted to the previous definition of ex for a real argument (when Im(z)=0) and satisfied ez+w = ez ew for any complex z and w. for me, that was an unsatisfying "definition".
 
Last edited:
  • #12
Hello:

So if my function was

LN [ -exp(cx)/sin(d) - i ] = ?

Then, I would decompose it to real and imaginary parts?

The larger problem is

LN [ -exp(cx)/sin(d) - i ] - LN [ -exp(cx)/sin(d) + i ]

where c and d are constants.

?
 
  • #13
BCox said:
Hello:

So if my function was

LN [ -exp(cx)/sin(d) - i ] = ?

Then, I would decompose it to real and imaginary parts?
Assuming that -exp(cx)/sin(d) is real, that is of the form ln(a- i) with a= -exp(cx)/sin(d). Rewrite a- i in "polar form", [itex]re^{i\theta}[/itex] with [itex]r= \sqrt{exp(2cx)/sin^2(d)+ 1}[/itex][itex]= \sqrt{exp(2cx)+ sin^2(d)}/sin(d)[/itex] and [itex]\theta= arctan(sin(d)/exp(cx))[/itex]. Then [itex]ln(a- i)= ln(r)+ \theta i+ 2k\pi i[/itex] or
[tex]ln(-exp(cx)/sin(d)- i)= \frac{1}{2}ln(exp(2cx)+ sin^2(d))- ln(sin(d))+ arctan(sin(d)/exp(cx))i+ 2k\pi i[/tex]

The larger problem is

LN [ -exp(cx)/sin(d) - i ] - LN [ -exp(cx)/sin(d) + i ]

where c and d are constants.

?
 
  • #14
Hmm... perhaps a rephrase of the question is more appropriate.

I want to take the limit of the following function as x -> infinity

(1/d) * arcot [ - exp(cx) / sin(d) ]

where d is (-pi,0)

Now a prior condition would stipulate that the above has to go to zero as x tends to infinity. But I am more interested at the rate at which the function goes to zero as x -> infinity.

For one case as d->0, the first term tends to infinity. But I have another condition telling me that the whole function must approach zero; so that the second term arcot() must approach zero at a faster rate than 1/d. But analytically, what is the rate that

(1/d) * arcot [ - exp(cx) / sin(d) ] ~ ? as x->infinity
 
  • #15
I'm not really a "mathematician", but for what its worth, you could put the complex number into a power series and hopefully try to see what it converges too...no? :( ??
 
  • #16
?? A power series is necessarily a function. How do you put a number in a power series.
 
  • #17
HallsofIvy said:
?? A power series is necessarily a function. How do you put a number in a power series.

right. It's tricky
 
  • #18
Perhaps this may be correct...

1. arcot = ( pi/2 - arctan() )
2. lim 1/d * [ pi/2 - arctan() ] as x->infin
3. We know that the express above goes to zero. We just want to know how fast. So
lim 1/d * [ pi/2 - arctan() ] = 0 as x->infin
4. 1/d * arctan[ - exp(cx) / sin(d) ] = pi/2d
5. arctan[ - exp(cx) / sin(d) ] = pi/2
6. tan{ arctan[ - exp(cx) / sin(d) ] } = tan(pi/2)
7. - exp(cx) / sin(d) = infin

8. So that the rate at which
lim 1/d * [ pi/2 - arctan() ] -> 0 as x->infin
is equal to the rate at which
lim -exp(cx) / sin(d) -> infinity as x->infin

9. Now if we are correct to assume that
lim exp(x) -> infinity as x->infinity
is at the same rate as
lim exp(-x) -> 0 as x-> infinity

10. Then the rate at which lim -exp(cx) / sin(d) -> infinity as x->infin
is the the same as
lim sin(d) * exp(-cx) -> 0 as x->infin

11. And by communicative property we would have that
lim 1/d * [ pi/2 - arctan() ] -> 0 as x->infin
is the same as
lim sin(d) * exp(-cx) -> 0 as x->infin
Or the rae at which the original expression approaches zero is
sin(d) * exp(-cx)
 
  • #19
BCox said:
right. It's tricky
Actually, I misread the question. He's suggesting putting the given complex number into the Taylor's series for the given function. I thought he was referring to writing the compex number as a power series.
 
  • #20
erm.

You substitute in for x.

Like how a calculator evaluates sin(x).
 

1. What is a logarithm and why is it useful for complex numbers?

A logarithm is an operation that is the inverse of exponentiation. It helps us solve equations and perform calculations involving exponential functions. For complex numbers, logarithms are useful because they allow us to break down a complex number into simpler components, making it easier to work with.

2. How do you find the logarithm of a complex number?

To find the logarithm of a complex number, we use the formula log(z) = log|z| + i*arg(z), where log|z| is the logarithm of the magnitude of the complex number and arg(z) is the argument or angle of the complex number. We can then use this formula to find the logarithm of any complex number in the form of a+bi.

3. What is the difference between the natural logarithm and the common logarithm for complex numbers?

The natural logarithm, denoted as ln(z), uses the base e (Euler's number) and is often used in mathematics and science. The common logarithm, denoted as log(z), uses the base 10 and is commonly used in everyday calculations. The process of finding the logarithm of a complex number is the same for both, but the resulting values will be different.

4. Can the logarithm of a complex number be negative?

Yes, the logarithm of a complex number can be negative. This happens when the magnitude of the complex number is less than 1, making the logarithm of the magnitude negative. The argument of the complex number will determine whether the overall value of the logarithm is positive or negative.

5. Are there any restrictions when finding the logarithm of a complex number?

Yes, there are some restrictions. First, the complex number cannot be 0, as the logarithm of 0 is undefined. Additionally, the base of the logarithm must be positive, so the complex number cannot have a negative real part. It is also important to note that the resulting logarithm will be a complex number itself, so it may not always be a real number.

Similar threads

Replies
6
Views
2K
  • General Math
Replies
19
Views
2K
Replies
1
Views
1K
  • Precalculus Mathematics Homework Help
Replies
20
Views
896
  • General Math
Replies
15
Views
3K
  • Differential Equations
Replies
3
Views
2K
  • General Math
Replies
14
Views
1K
Replies
1
Views
1K
Replies
1
Views
729
Back
Top