MHB To prove that Cauchy sequence

  • Thread starter Thread starter ozkan12
  • Start date Start date
  • Tags Tags
    Cauchy Sequence
ozkan12
Messages
145
Reaction score
0
View attachment 4866View attachment 4867View attachment 4868View attachment 4859View attachment 4860View attachment 4861View attachment 4862View attachment 4863View attachment 4864View attachment 4865View attachment 4869

My Questions:

1) İn both sides of inequality of (*) why we use "n", that is, why we do multiplication with "n" ?

2) in (**) by Letting $n\to\infty$ we obtain $\lim_{{n}\to{\infty}} n\left[d\left({T}^{n}x,{T}^{n+1}x\right)\right]{}^{r}=0$ How this happened ?

3) Since, $\lim_{{n}\to{\infty}} n\left[d\left({T}^{n}x,{T}^{n+1}x\right)\right]{}^{r}=0$ there exists ${n}_{1}\in\Bbb{N}$ such that $d\left({T}^{n}x, {T}^{n+1}x\right)\le\frac{1}{{n}^{\frac{1}{r}}}$... How we can write this ?
Also, why we use number $\frac{1}{{n}^{\frac{1}{r}}}$ ?

Please can you give an answer to my questions ? Thank you for your attention..
 

Attachments

  • 4.png
    4.png
    51.9 KB · Views: 100
  • 5.png
    5.png
    42.8 KB · Views: 106
  • 6.png
    6.png
    43.4 KB · Views: 107
  • 7.png
    7.png
    42.6 KB · Views: 106
  • 8.png
    8.png
    48 KB · Views: 115
  • 9.png
    9.png
    44.7 KB · Views: 105
  • 10.png
    10.png
    37.9 KB · Views: 106
  • 1.png
    1.png
    54.5 KB · Views: 106
  • 2.png
    2.png
    61.2 KB · Views: 109
  • 3.png
    3.png
    58.4 KB · Views: 100
  • 11.png
    11.png
    50.4 KB · Views: 114
Physics news on Phys.org
ozkan12 said:
My Questions:

1) İn both sides of inequality of (*) why we use "n", that is, why we do multiplication with "n" ?

2) in (**) by Letting $n\to\infty$ we obtain $\lim_{{n}\to{\infty}} n\left[d\left({T}^{n}x,{T}^{n+1}x\right)\right]{}^{r}=0$ How this happened ?

I'm not at all sure I buy it, myself. It's not clear at all from, say, the $(\Theta_3)$ condition that $\theta^{k^n}$ goes to $1$ faster than $n\to\infty$, which is certainly what you'd need to conclude (**). I could buy, from the $(\Theta_3)$ condition, that
$$\lim_{n\to\infty}n^r \left(\theta^{n^k}-1\right)=\ell,$$
where $0<r<1$, but as we don't seem to have much control over the size of $\ell$, I'm not sure that helps us much.

Hang on: I think it might be a typo. I think you could conclude that IF:
$$\lim_{n\to\infty}[d(T^nx,T^{n+1}x)]^r=0,$$
THEN there exists an $n_1>0$ such that for all $n>n_1$, you have
$$d(T^nx,T^{n+1}x)\le \frac{1}{n^{1/r}}.$$
Isn't that pretty close to the definition of convergence? Our $\varepsilon$ is just written in this fancy way. I could be wrong, but I think this works.

3) Since, $\lim_{{n}\to{\infty}} n\left[d\left({T}^{n}x,{T}^{n+1}x\right)\right]{}^{r}=0$ there exists ${n}_{1}\in\Bbb{N}$ such that $d\left({T}^{n}x, {T}^{n+1}x\right)\le\frac{1}{{n}^{\frac{1}{r}}}$... How we can write this ?
Also, why we use number $\frac{1}{{n}^{\frac{1}{r}}}$ ?

Please can you give an answer to my questions ? Thank you for your attention..

I think the author wants to be able to do the sums at the very end of the proof, and this form of $\varepsilon$ let's him do that.
 
Dear Ackbach

İn your post, I think these definitions close to definition of convergence but this carry very special conditions...But I didnt understand why we choose $\varepsilon$ in this way ? Because this is very special, I think that can we take $\varepsilon$ different from this ? This article is hard for me :)
 

Similar threads

Replies
4
Views
2K
Replies
9
Views
2K
Replies
17
Views
987
Replies
6
Views
2K
Replies
10
Views
3K
Back
Top