If you "differentiate" the continuous function ##x \longmapsto |x|## then you get a gap of ##+2## at zero. But if we start with a differentiable function ##f##, say at ##0##, then we have
$$
f(h)=f(0) + \varphi (h) + r(h) = f(0)+c\cdot h +r(h)
$$
with a small remainder term ##r(h)## and a linear function ##\varphi \, : \,x\longmapsto c\cdot x .## Now ##c\cdot h## is still small for small ##h## and our function value ##f(h)## is still close to ##f(0)##. I.e. there is no way to get a gap of ##+2## for small and smaller ##h.## We can have as derivative ##\varphi (x)=cx## from the left and ##\varphi' (x)=c'x## from the right, which is discontinuous if ##c\neq c'.## This means we have a discontinuity of the derivative. However, ##ch## and ##c'h## are close for small ##h##.