MHB To what is X_{-m}+α(a)Y_{-m} equal?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $F$ be an integral domain with characteristic $2$. Let $a\in F[t]$ and $a \notin F$. Let $\alpha (a)$ be a root of the equation $x^2+ax+1=0$. We define the two sequences $X_m(a), Y_m(a) \in F[t], m \in \mathbb{Z}$ as followed:
$$X_m(a)+\alpha (a)Y_m(a)=(\alpha (a))^m=(a+\alpha (a))^{-m}$$

Lemma.

Let $F$ be an integral domain with characteristic $p=2$. Let $a \in F[t], a \notin F$. $X_m(s)$ (resp. $Y_m(a)$) is equal to the polynomial that we obtain if we substitute $t$ with $a$ at $X_m(t)$ (resp. $Y_m(t)$).
  • The degree of the polynomial $X_m(t)$ is $m-2$, if $m \geq 2$.
  • The degree of the polynomial $Y_m(t)$ is $m-1$, if $m \geq 2$.
  • $X_{-m}=X_m(a)+aY_m(a)$
  • $Y_{-m}(a)=Y_m(a)$
To prove this lemma I have done the following:

For the first two sentences about the degree I used induction on $m$. Is this correct?

As for the last two relations:

$$X_{-m}+\alpha (a)Y_{-m}=(a+\alpha (a))^m=((a+\alpha (a))^{-m})^{-1}=(X_m(a)+\alpha (a)Y_m(a))^{-1}=\frac{1}{X_m(a)+\alpha (a)Y_m(a)}$$

How could we continue?
 
Physics news on Phys.org
Could we maybe do it as follows:

$$X_{-m}(a)+\alpha (a)Y_{-m}(a)=(a+\alpha (a))^m=(a+\alpha (a))^{2m}(a+\alpha (a))^{-m}=[(a+\alpha (a))^2]^m(X_m(a)+\alpha (a)Y_m(a))=[a^2+(\alpha (a))^2]^m(X_m(a)+\alpha (a)Y_m(a))=[a^2+a\alpha (a)+1]^m(X_m(a)+\alpha (a)Y_m(a))$$

But how could we continue?

Or is this the wrong way?
 
Last edited by a moderator:
I have also an other idea:

$$X_{-m}(a)+\alpha (a)Y_{-m}(a)=(a+\alpha (a))^m=X_m(a)+(a+\alpha (a))Y_m(a)\\ =X_m(a)+aY_m(a)+\alpha (a)Y_m(a) \\ \Rightarrow X_{-m}(a)=X_m(a)+aY_m(a)\ \ , \ \ Y_{-m}(a)=Y_m(a)$$

Is this correct?
 
Last edited by a moderator:
Hi,

I don't have the solution, in fact, I can not even try to do it right now, but just as a comment, you can't take inverses (rise to -1), because you are working in an integral domain, not in a field.

And using induction is OK if you haven't made any mistakes. :)

I will try to solve it if I can have some rest this weekend =P
 
Fallen Angel said:
you can't take inverses (rise to -1), because you are working in an integral domain, not in a field.

At my last idea, at post #3, I don't inverse the elemnts to $-1$. Is this correct to show it in that way?
Fallen Angel said:
And using induction is OK if you haven't made any mistakes. :)

I did it as follows:

Base case: For $m=2$ we have $X_2(a)+\alpha (a)Y_2(a)=(\alpha (a))^2=a\alpha (a)+1$. So $X_2(a)=1, Y_2(a)=a$. That means that $\text{deg}(X_2(t))=0=2-2$ and $\text{deg}(Y_2(t))=1=2-1$.

Inductive hypothesis: We suppose that it holds for $m=k$, i.e., $\text{deg}(X_k(t))=k-2$ and $\text{deg}(Y_k(t))=k-1$.

Inductive step: We will show that it holds for $n=k+1$, i.e., $\text{deg}(X_{k+1}(t))=k-1$ and $\text{deg}(Y_{k+1}(t))=k$.
$$X_{k+1}(a)+\alpha (a)Y_{k+1}(a)=(a+\alpha (a))^{-(k+1)}=(a+\alpha (a))^{-k}(a+\alpha (a))^{-1}=(X_k(a)+\alpha (a)Y_k(a))(a+\alpha (a))^{-1}=(X_k(a)+\alpha (a)Y_k(a))\alpha (a)=\alpha (a)X_k(a)+\alpha (a)^2Y_k(a)=\alpha (a)X_k(a)+(a\alpha (a)+1)Y_k(a)=Y_k(a)+\alpha (a)[X_k(a)+aY_k(a)] \\ \Rightarrow X_{k+1}(a)=Y_k(a), Y_{k+1}(a)=X_k(a)+aY_k(a) \\ \Rightarrow \text{deg}(X_{k+1}(a))=\text{deg}(Y_k(a))=k-1 \ \ , \ \ \text{deg}(Y_{k+1}(a))=\max \{\text{deg}(X_k(a)), \text{deg}(aY_k(a))\}=\max \{k-2, 1+k-1\}=k$$
I am a little confused about "a" and "t".
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top