I Tong Dynamics: cannot cancel angle from orbit energy expression calculation

  • I
  • Thread starter Thread starter jds17
  • Start date Start date
  • Tags Tags
    Energy Orbit
AI Thread Summary
The discussion revolves around a challenge in deriving the energy expression from David Tong's lectures, specifically the formula E = (mk² / 2l²)(e² - 1). The user struggles to understand how the angle θ cancels out in the energy calculation, despite recognizing that energy is a constant of motion. They initially mismanaged the variables by not expressing the radius r in terms of r₀, θ, and eccentricity. After realizing this oversight, the user plans to revisit the calculation the following day. The conversation highlights the importance of correctly substituting variables in physics calculations.
jds17
Messages
7
Reaction score
1
Hi, I love the lectures by David Tong. Usually I can follow his calculations (but I am not yet so far into the lectures...). But one that I just cannot do is the derivation of the energy in (4.16), the expression being ##E = \frac {mk^2} {2 l^2} (e^2 - 1)##, where l is the constant angular momentum of the orbit of the single point particle, m its mass, V(r) = - k/r the expression for the potential and e the eccentricity of the orbit.
I just don't see how using the expression ##\frac {dr} {d\theta} = \frac {r_0 e \sin(\theta)} {(1+e \cos(\theta))^2}## (page 59) in the expression of the energy using the effective potential cancels out the angle ##\theta##. Of course it has to work since the energy is a constant of motion, but no matter what trigonometric manipulations I use, it does not cancel out the angle.
In case it is not so readable I have attached the relevant sections from the lecture
 

Attachments

  • IMG_20240910_232116.jpg
    IMG_20240910_232116.jpg
    32.3 KB · Views: 39
  • IMG_20240910_232129.jpg
    IMG_20240910_232129.jpg
    17 KB · Views: 39
Last edited:
Physics news on Phys.org
Are you cancelling units or dimensions?
An angle is a ratio, it has no dimension.
 
Thanks! I know, the angle is dimensionless, but still the energy cannot depend on the angle.

I just found why I could not continue with the calculation: I left the radius r in the expression for the energy, but I need to expand it in terms of r_0, theta and the eccentricity as well! It is getting late here. I will do the calculation tomorrow.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top